stm32h750 keil
时间: 2024-06-17 22:02:37 浏览: 183
STM32H750是意法半导体(STMicroelectronics)推出的一款高性能微控制器,它基于ARM Cortex-M7内核,具有丰富的外设和强大的计算能力。Keil是一家提供嵌入式软件开发工具的公司,其MDK-ARM开发环境是一套专为ARM处理器设计的集成开发环境(IDE)。
STM32H750 Keil是指在Keil MDK-ARM开发环境下进行STM32H750微控制器的开发。Keil MDK-ARM提供了一系列的工具和组件,包括编译器、调试器、仿真器、代码编辑器等,可以帮助开发者进行嵌入式软件的开发、调试和测试。
使用Keil MDK-ARM进行STM32H750的开发,可以充分发挥STM32H750的性能和功能,快速开发出高质量的嵌入式应用程序。Keil MDK-ARM提供了丰富的库函数和示例代码,方便开发者进行快速开发,并且支持多种调试和仿真方式,如JTAG、SWD等。
相关问题
STM32H750使用keil生成工程用来测量正弦波的频率和峰峰值
好的,下面是关于如何使用Keil生成STM32H750工程,并测量正弦波频率和峰峰值的步骤:
1. 打开Keil软件,选择File -> New Project,选择STM32H750B8Tx设备,选择对应的芯片型号,选择工程的存储位置。
2. 在Project中右击,选择Options for Target,在C/C++选项卡中,勾选Include Paths和Define Symbols,将芯片的头文件路径和相关宏定义添加进去。
3. 在Project中右击,选择Add New Item,添加一个.c文件,命名为main.c。
4. 在main.c中编写代码,包括初始化时钟、GPIO口、ADC和定时器等模块,开启ADC采样和定时器中断等操作。具体代码可以参考以下示例:
```c
#include "stm32h7xx.h"
#define ADC_CHANNEL 0
#define ADC_BUF_LEN 1000
volatile uint32_t adc_buf[ADC_BUF_LEN];
volatile uint32_t adc_idx = 0;
void SystemClock_Config(void);
void MX_GPIO_Init(void);
void MX_ADC1_Init(void);
void MX_TIM6_Init(void);
void MX_NVIC_Init(void);
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_ADC1_Init();
MX_TIM6_Init();
MX_NVIC_Init();
HAL_TIM_Base_Start_IT(&htim6);
HAL_ADC_Start_DMA(&hadc1, (uint32_t *)adc_buf, ADC_BUF_LEN);
while (1)
{
// 等待中断处理采样数据
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Supply configuration update enable */
HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY);
/** Configure the main internal regulator output voltage */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV2;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 5;
RCC_OscInitStruct.PLL.PLLN = 200;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 4;
RCC_OscInitStruct.PLL.PLLR = 2;
RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_1;
RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE;
RCC_OscInitStruct.PLL.PLLFRACN = 0;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
{
Error_Handler();
}
}
void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
/*Configure GPIO pin : PA5 */
GPIO_InitStruct.Pin = GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
void MX_ADC1_Init(void)
{
ADC_ChannelConfTypeDef sConfig = {0};
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = DISABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DMAContinuousRequests = ENABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
}
void MX_TIM6_Init(void)
{
TIM_MasterConfigTypeDef sMasterConfig = {0};
htim6.Instance = TIM6;
htim6.Init.Prescaler = 199;
htim6.Init.CounterMode = TIM_COUNTERMODE_UP;
htim6.Init.Period = 999;
htim6.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
if (HAL_TIM_Base_Init(&htim6) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
}
void MX_NVIC_Init(void)
{
/* TIM6_IRQn interrupt configuration */
HAL_NVIC_SetPriority(TIM6_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(TIM6_IRQn);
/* ADC_IRQn interrupt configuration */
HAL_NVIC_SetPriority(ADC_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(ADC_IRQn);
}
void TIM6_IRQHandler(void)
{
HAL_TIM_IRQHandler(&htim6);
}
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
if (htim->Instance == TIM6)
{
adc_idx = 0;
}
}
void ADC_IRQHandler(void)
{
HAL_ADC_IRQHandler(&hadc1);
}
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
{
if (hadc->Instance == ADC1)
{
uint32_t sum = 0;
for (int i = 0; i < ADC_BUF_LEN; i++)
{
sum += adc_buf[i];
}
float vavg = (float)sum / (float)ADC_BUF_LEN * 3.3 / 4096.0;
float vmax = 0.0;
for (int i = 0; i < ADC_BUF_LEN; i++)
{
float v = (float)adc_buf[i] * 3.3 / 4096.0;
if (v > vmax) vmax = v;
}
// 计算正弦波的频率和峰峰值
}
}
```
5. 在main.c中,采用DMA的方式进行ADC采样,将采样数据存入缓冲区,并在定时器中断中对缓冲区数据进行处理,计算正弦波的频率和峰峰值。具体的计算方法可以参考以下示例:
```c
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
{
if (hadc->Instance == ADC1)
{
uint32_t sum = 0;
for (int i = 0; i < ADC_BUF_LEN; i++)
{
sum += adc_buf[i];
}
float vavg = (float)sum / (float)ADC_BUF_LEN * 3.3 / 4096.0;
float vmax = 0.0;
for (int i = 0; i < ADC_BUF_LEN; i++)
{
float v = (float)adc_buf[i] * 3.3 / 4096.0;
if (v > vmax) vmax = v;
}
float freq = 0.0;
float period = 0.0;
float fmax = 1000.0;
int idx = 0;
for (int i = 1; i < ADC_BUF_LEN; i++)
{
if (adc_buf[i] > adc_buf[i-1] && adc_buf[i] > adc_buf[i+1])
{
if (idx > 0)
{
period = (float)(i - idx) / 10000.0;
freq = 1.0 / period;
if (freq > fmax) break;
}
idx = i;
}
}
printf("Vavg: %fV, Vmax: %fV, Freq: %fHz\n", vavg, vmax, freq);
}
}
```
6. 编译工程,下载程序到STM32H750芯片中,连接正弦波信号到ADC输入引脚,运行程序,观察串口输出的结果,即可得到正弦波的频率和峰峰值信息。
注意:在使用ADC采样时,还需要注意采样时钟、采样周期、ADC通道等参数的设置,具体可以根据实际情况进行调整。
STM32H750使用keil生成代码用来测量正弦波的频率和峰峰值。
首先,你需要连接一个正弦波信号源到STM32H750的ADC输入引脚上。然后,你需要使用Keil软件创建一个新的工程,并选择适当的芯片型号和编译器。接下来,你需要配置ADC模块以获取输入信号并将其转换为数字值。下面是一些参考代码:
```c
#include "stm32h7xx.h"
// ADC配置
void ADC_Configuration(void)
{
ADC_HandleTypeDef hadc1;
// 使能ADC1时钟
__HAL_RCC_ADC12_CLK_ENABLE();
// 初始化ADC配置结构体
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = DISABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.NbrOfDiscConversion = 0;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
// ADC初始化失败,进行错误处理
}
// 配置ADC通道
ADC_ChannelConfTypeDef sConfig = {0};
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.SamplingTime = ADC_SAMPLETIME_640CYCLES_5;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
// ADC通道配置失败,进行错误处理
}
}
// 获取ADC采样值
uint16_t ADC_GetSample(void)
{
ADC_HandleTypeDef hadc1;
hadc1.Instance = ADC1;
// 启动ADC转换
HAL_ADC_Start(&hadc1);
// 等待转换完成
HAL_ADC_PollForConversion(&hadc1, 100);
// 读取采样值
uint16_t adc_value = HAL_ADC_GetValue(&hadc1);
return adc_value;
}
int main(void)
{
// 初始化系统时钟和其他外设
SystemInit();
// 配置ADC
ADC_Configuration();
// 循环读取ADC采样值
while (1)
{
// 获取ADC采样值
uint16_t adc_value = ADC_GetSample();
// 计算峰峰值
// TODO: 计算峰峰值
// 计算频率
// TODO: 计算频率
}
}
```
在代码中,`ADC_Configuration`函数用于配置ADC模块,包括时钟源、分辨率、采样模式、采样时间等。`ADC_GetSample`函数用于获取ADC采样值,并返回数字值。在`main`函数中,你可以使用`ADC_GetSample`函数循环读取ADC采样值,并计算正弦波的峰峰值和频率。你需要根据你的具体应用场景来进行计算。
阅读全文