++p->n指向第几个元素在这个定义中struct st{ int n; struct st *next }a[3]={5, &a[1],7,&a[ 2],9,NULL}, *p=a;

时间: 2024-05-26 09:17:21 浏览: 29
首先,这是一个定义了一个结构体类型为`st`的结构体。它有两个成员变量,一个是整型变量`n`,另一个是指向结构体类型`st`的指针`next`。 接下来,定义了一个数组`a`,其中包含3个结构体类型`st`的元素,每个元素都初始化了`n`和`next`成员变量。具体来说,第一个元素的`n`为5,`next`指向`a[1]`;第二个元素的`n`为7,`next`指向`a[2]`;第三个元素的`n`为9,`next`为NULL。 最后,定义了一个指向结构体类型`st`的指针`p`,并将其初始化为`a`。这样的话,`p`指向了数组`a`的第一个元素,即`{5, &a[1]}`。因此,`++p`会使`p`指向数组`a`的第二个元素,即`{7, &a[2]}`,而`++p->n`则会先将`p`指向的元素的`n`加1,变成8,然后返回它的地址,即指向`a[2]`的指针`next`。因此,`++p->n`等价于`*(++p)->next`,即获取`p`指向的元素的`next`成员变量所指向的元素。在这个例子中,它指向了数组`a`的第三个元素,即`{9, NULL}`。
相关问题

区分p++与p->next可以举个例子吗

好的,假设我们有一个链表结构体Node,其中每个结点的定义如下: ``` struct Node { int val; Node* next; }; ``` 现在我们有一个指向第一个结点的指针p,我们想要访问下一个结点。那么,使用p++和p->next的区别如下: 1. p++:指针p向后移动一个位置,即指向下一个结点的指针。 ``` p++; ``` 2. p->next:访问指针p所指向的结点的成员变量next,得到指向下一个结点的指针。 ``` p = p->next; ``` 总体上来说,p++是指针运算,而p->next是成员变量的访问,它们的操作对象和操作方式不同。

#include<bits/stdc++.h> using namespace std; typedef struct Node * ptrtonode; typedef struct Node { int data,order; ptrtonode next; } node; int main() { ptrtonode head=new node(); head->next=NULL; int n,a,b; char c; scanf("%d",&n); int o=1; for(int i=1; i<=n; i++) { ptrtonode q; ptrtonode p; cin>>c; if(c=='H') { p=new node(); scanf("%d",&a); p->data=a; p->order=o; o++; p->next=head->next; head->next=p; } else if(c=='D') { cin>>a; if(a==0) { p=head->next; head->next=p->next; free(p); } else { q=head->next; while(q->order!=o) { q=q->next; } p=q->next; q->next=p->next; } } else if(c=='I') { scanf("%d%d",&a,&b); p=head->next; while(p->order!=a) { p=p->next; } q=new node(); q->data=b; q->order=o; o++; q->next=p->next; p->next=q; } } head=head->next; while(head) { cout<<head->data<<" "<<head->order<<endl; head=head->next; } return 0; }哪里有错误

这段代码的错误是使用了 `free()` 函数,而 `free()` 函数是 C 语言的函数,在 C++ 中应该使用 `delete` 或 `delete[]` 来释放内存。另外,使用 `cin` 读入字符时应该加上 `#include <iostream>`。下面是修改过的代码: ```c++ #include<iostream> using namespace std; typedef struct Node * ptrtonode; typedef struct Node { int data, order; ptrtonode next; } node; int main() { ptrtonode head = new node(); head->next = NULL; int n, a, b; char c; cin >> n; int o = 1; for(int i = 1; i <= n; i++) { ptrtonode q; ptrtonode p; cin >> c; if(c == 'H') { p = new node(); cin >> a; p->data = a; p->order = o; o++; p->next = head->next; head->next = p; } else if(c == 'D') { cin >> a; if(a == 0) { p = head->next; head->next = p->next; delete p; } else { q = head->next; while(q->order != o) { q = q->next; } p = q->next; q->next = p->next; delete p; } } else if(c == 'I') { cin >> a >> b; p = head->next; while(p->order != a) { p = p->next; } q = new node(); q->data = b; q->order = o; o++; q->next = p->next; p->next = q; } } head = head->next; while(head) { cout << head->data << " " << head->order << endl; head = head->next; } return 0; } ```

相关推荐

查找错误并举出、修改#define _CRT_SECURE_NO_WARNINGS 1 #include<stdio.h> typedef struct num { float a; //系数 int b; //指数 struct num *next; }*num; struct LinkList // 链表类型 { num head;// 分别指向线性链表中的头结点和最后一个结点 感觉不需要tail int len; // 指示线性链表中数据元素的个数 }; struct LinkList *init(struct LinkList *list)//创建空链表 { list = (struct LinkList *)malloc(sizeof(struct LinkList)); list->len = 0; list->head = (struct num*)malloc(sizeof(struct num));//list->tail = list->head->next = NULL;//list->tail->next = return list; }; void compare(struct LinkList *list, float a, int b)//比较指数 { int i = 0; struct num*p = list->head; for (i; i <= list->len; i++) { if (b > p->b) p = p->next; else if (b = p->b){ p->b += b; break; } else{ add(list, i, a, b);//插入 break; } } if (i>list->len) add(list, i, a, b);//添加到最后一个 }; void add(struct LinkList *list, int index, float a,int b)//添加新的指数项 { struct num*p = list->head, *s; int i; for (i = -1; i<index - 1; i++) { p = p->next; } s = (struct num *)malloc(sizeof(struct num)); s->a = a; s->b = b; s->next = p->next; p->next = s; list->len++; //if (index == list->len) 感觉不需要尾结点 // list->tail = s; }; int main(){ //指数升序查找 struct LinkList *lista, *listb ; lista = init(lista); listb = init(listb); int n,b; float a; scanf("%d", &n); for (int i = 0; i < n; i++)//lista { scanf("%f%d", &a,&b); compare(lista, a, b); } scanf("%d", &n); for (int i = 0; i < n; i++)//listb { scanf("%f%d", &a, &b); compare(listb, a, b); } return 0; }

最新推荐

recommend-type

利用SIMULINK建立的四转子动力学模型.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

WPF的MVVM框架,数据绑定和命令的学习文档

MVVM是WPF的一种软件架构模式,它将应用程序分为三个层次 model(数据模型),view(视图),viewmodel(视图模型) 在MVVM中数据绑定、命令一直是难点,该文档讲解的比较清楚明了 数据绑定 1、Binding数据源 ◆绑定对象是DataContext,DataContent数据是默认的数据源属性,通过在Xaml中初始化Datacontent绑定 ◆绑定对象是Source属性时,通过资源Resouce的key名字来绑定Source ◆绑定对象是RelativeSource属性,数据源是控件树中相对于当前控件的上层控件时 ◆绑定对象是ElementName属性,数据源是其他控件 2、Binding模式(数据流方向),由Model属性指定,有5个模式 3、转换器 4、绑定的其它属性 5、INotifyPropertyChanged接口和wpf提供的实现了这个接口的类ObservableObject、BindableBase,可以直接继承这些类,使代码更简洁 6、实现INotifyColletionChanged接口,用于集合
recommend-type

天鹰优化算法AO-TCN-LSTM-Multihead-Attention多变量时间序列预测Matlab实现.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

解决本地连接丢失无法上网的问题

"解决本地连接丢失无法上网的问题" 本地连接是计算机中的一种网络连接方式,用于连接到互联网或局域网。但是,有时候本地连接可能会丢失或不可用,导致无法上网。本文将从最简单的方法开始,逐步解释如何解决本地连接丢失的问题。 **任务栏没有“本地连接”** 在某些情况下,任务栏中可能没有“本地连接”的选项,但是在右键“网上邻居”的“属性”中有“本地连接”。这是因为本地连接可能被隐藏或由病毒修改设置。解决方法是右键网上邻居—属性—打开网络连接窗口,右键“本地连接”—“属性”—将两者的勾勾打上,点击“确定”就OK了。 **无论何处都看不到“本地连接”字样** 如果在任务栏、右键“网上邻居”的“属性”中都看不到“本地连接”的选项,那么可能是硬件接触不良、驱动错误、服务被禁用或系统策略设定所致。解决方法可以从以下几个方面入手: **插拔一次网卡一次** 如果是独立网卡,本地连接的丢失多是因为网卡接触不良造成。解决方法是关机,拔掉主机后面的电源插头,打开主机,去掉网卡上固定的螺丝,将网卡小心拔掉。使用工具将主板灰尘清理干净,然后用橡皮将金属接触片擦一遍。将网卡向原位置插好,插电,开机测试。如果正常发现本地连接图标,则将机箱封好。 **查看设备管理器中查看本地连接设备状态** 右键“我的电脑”—“属性”—“硬件”—“设备管理器”—看设备列表中“网络适配器”一项中至少有一项。如果这里空空如也,那说明系统没有检测到网卡,右键最上面的小电脑的图标“扫描检测硬件改动”,检测一下。如果还是没有那么是硬件的接触问题或者网卡问题。 **查看网卡设备状态** 右键网络适配器中对应的网卡选择“属性”可以看到网卡的运行状况,包括状态、驱动、中断、电源控制等。如果发现提示不正常,可以尝试将驱动程序卸载,重启计算机。 本地连接丢失的问题可以通过简单的设置修改或硬件检查来解决。如果以上方法都无法解决问题,那么可能是硬件接口或者主板芯片出故障了,建议拿到专业的客服维修。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Java泛型权威指南:精通从入门到企业级应用的10个关键点

![java 泛型数据结构](https://media.geeksforgeeks.org/wp-content/uploads/20210409185210/HowtoImplementStackinJavaUsingArrayandGenerics.jpg) # 1. Java泛型基础介绍 Java泛型是Java SE 1.5版本中引入的一个特性,旨在为Java编程语言引入参数化类型的概念。通过使用泛型,可以设计出类型安全的类、接口和方法。泛型减少了强制类型转换的需求,并提供了更好的代码复用能力。 ## 1.1 泛型的用途和优点 泛型的主要用途包括: - **类型安全**:泛型能
recommend-type

cuda下载后怎么通过anaconda关联进pycharm

CUDA(Compute Unified Device Architecture)是NVIDIA提供的一种并行计算平台和编程模型,用于加速GPU上进行的高性能计算任务。如果你想在PyCharm中使用CUDA,你需要先安装CUDA驱动和cuDNN库,然后配置Python环境来识别CUDA。 以下是步骤: 1. **安装CUDA和cuDNN**: - 访问NVIDIA官网下载CUDA Toolkit:https://www.nvidia.com/zh-cn/datacenter/cuda-downloads/ - 下载对应GPU型号和系统的版本,并按照安装向导安装。 - 安装
recommend-type

BIOS报警声音解析:故障原因与解决方法

BIOS报警声音是计算机启动过程中的一种重要提示机制,当硬件或软件出现问题时,它会发出特定的蜂鸣声,帮助用户识别故障源。本文主要针对常见的BIOS类型——AWARD、AMI和早期的POENIX(现已被AWARD收购)——进行详细的故障代码解读。 AWARDBIOS的报警声含义: 1. 1短声:系统正常启动,表示无问题。 2. 2短声:常规错误,需要进入CMOS Setup进行设置调整,可能是不正确的选项导致。 3. 1长1短:RAM或主板故障,尝试更换内存或检查主板。 4. 1长2短:显示器或显示卡错误,检查视频输出设备。 5. 1长3短:键盘控制器问题,检查主板接口或更换键盘。 6. 1长9短:主板FlashRAM或EPROM错误,BIOS损坏,更换FlashRAM。 7. 不断长响:内存条未插紧或损坏,需重新插入或更换。 8. 持续短响:电源或显示问题,检查所有连接线。 AMI BIOS的报警声含义: 1. 1短声:内存刷新失败,内存严重损坏,可能需要更换。 2. 2短声:内存奇偶校验错误,可关闭CMOS中的奇偶校验选项。 3. 3短声:系统基本内存检查失败,替换内存排查。 4. 4短声:系统时钟错误,可能涉及主板问题,建议维修或更换。 5. 5短声:CPU错误,可能是CPU、插座或其他组件问题,需进一步诊断。 6. 6短声:键盘控制器错误,检查键盘连接或更换新键盘。 7. 7短声:系统实模式错误,主板可能存在问题。 8. 8短声:显存读写错误,可能是显卡存储芯片损坏,更换故障芯片或修理显卡。 9. 9短声:ROM BIOS检验错误,需要替换相同型号的BIOS。 总结,BIOS报警声音是诊断计算机问题的重要线索,通过理解和识别不同长度和组合的蜂鸣声,用户可以快速定位到故障所在,采取相应的解决措施,确保计算机的正常运行。同时,对于不同类型的BIOS,其报警代码有所不同,因此熟悉这些代码对应的意义对于日常维护和故障排除至关重要。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

图路径规划技术:导航系统中的路径优化算法

![java数据结构之图](https://img-blog.csdnimg.cn/201812241337282.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2R5d182NjY2NjY=,size_16,color_FFFFFF,t_70) # 1. 图路径规划技术概述 图路径规划技术是现代信息技术中的关键组成部分,它在物流、交通、网络设计等多个领域发挥着重要作用。路径规划涉及的图论基础、路径优化算法和应用案例是这一领域的三大支