matlab 的巴特沃斯高通滤波的算法分析
时间: 2023-08-23 16:41:37 浏览: 105
巴特沃斯滤波器的MATLAB实现
5星 · 资源好评率100%
Matlab中实现巴特沃斯高通滤波的算法与低通滤波类似,仍然可以通过调用butter函数实现。具体实现步骤如下:
1. 设定滤波器的阶数和截止频率:与低通滤波不同,高通滤波需要设定一个截止频率以上的频率范围,这个频率范围即为需要保留的高频信号的最小频率,同样使用归一化后的频率来设定。
2. 计算滤波器系数:与低通滤波类似,使用butter函数,将阶数和截止频率传入函数中,即可得到滤波器的系数,这些系数对应着b和a两个系数向量。
3. 对信号进行滤波:同样使用filter函数,将得到的b和a系数向量和需要滤波的信号作为输入,即可得到滤波后的信号。
下面是一个示例代码:
```
% 设定滤波器的阶数和截止频率
order = 4;
cutoff_freq = 0.2;
% 计算滤波器系数
[b, a] = butter(order, cutoff_freq, 'high');
% 生成示例信号
Fs = 1000; % 采样率
t = 0:1/Fs:1-1/Fs; % 时间向量
f = 5; % 信号频率
x = sin(2*pi*f*t); % 生成正弦信号
% 对信号进行滤波
y = filter(b, a, x);
% 绘制滤波前后的信号图像
subplot(2,1,1);
plot(t, x);
title('Original signal');
xlabel('Time (s)');
ylabel('Amplitude');
subplot(2,1,2);
plot(t, y);
title('Filtered signal');
xlabel('Time (s)');
ylabel('Amplitude');
```
在上述示例代码中,我们设定了阶数为4,截止频率为0.2,生成了一个正弦信号并进行了高通滤波处理,最终绘制了滤波前后的信号图像。需要注意的是,在计算滤波器系数时,需要在butter函数中添加一个参数'high',以指定这是一个高通滤波器。
阅读全文