帮我写一个基于Keras的图像去噪代码
时间: 2023-08-28 08:32:28 浏览: 96
图像去噪代码
好的,以下是一个基于Keras的图像去噪代码示例,希望能帮到您:
```python
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
# 读取图像数据
(x_train, _), (x_test, _) = keras.datasets.mnist.load_data()
# 转换图像数据类型并归一化
x_train = x_train.astype('float32') / 255.0
x_test = x_test.astype('float32') / 255.0
# 添加高斯噪声到图像中
noise_factor = 0.5
x_train_noisy = x_train + noise_factor * tf.random.normal(shape=x_train.shape)
x_test_noisy = x_test + noise_factor * tf.random.normal(shape=x_test.shape)
# 裁剪像素值到0-1之间
x_train_noisy = tf.clip_by_value(x_train_noisy, clip_value_min=0., clip_value_max=1.)
x_test_noisy = tf.clip_by_value(x_test_noisy, clip_value_min=0., clip_value_max=1.)
# 定义模型
input_img = keras.Input(shape=(28, 28, 1))
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(input_img)
x = layers.MaxPooling2D((2, 2), padding='same')(x)
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(x)
encoded = layers.MaxPooling2D((2, 2), padding='same')(x)
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(encoded)
x = layers.UpSampling2D((2, 2))(x)
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = layers.UpSampling2D((2, 2))(x)
decoded = layers.Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)
autoencoder = keras.Model(input_img, decoded)
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
# 训练模型
autoencoder.fit(x_train_noisy, x_train,
epochs=10,
batch_size=128,
shuffle=True,
validation_data=(x_test_noisy, x_test))
# 测试模型
decoded_imgs = autoencoder.predict(x_test_noisy)
# 显示图像
import matplotlib.pyplot as plt
n = 10
plt.figure(figsize=(20, 4))
for i in range(n):
# 显示原始图像
ax = plt.subplot(2, n, i + 1)
plt.imshow(x_test_noisy[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
# 显示去噪后的图像
ax = plt.subplot(2, n, i + 1 + n)
plt.imshow(decoded_imgs[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
```
该示例代码使用MNIST数字数据集作为输入,将高斯噪声添加到图像中,然后使用卷积神经网络模型对图像进行去噪处理。在训练和测试过程中,使用的损失函数为二元交叉熵。最后,代码通过matplotlib库将原始图像和去噪图像显示出来。
希望这个示例代码对您有所帮助!
阅读全文