使用netty处理在线播放mp4请求

时间: 2024-03-01 15:24:03 浏览: 31
可以使用Netty来处理在线播放mp4请求,下面是大致的实现思路: 1. 创建一个Netty服务器,监听指定的端口,等待客户端连接。 2. 当有客户端连接时,创建一个ChannelPipeline,添加一系列的ChannelHandler,用于处理请求和响应。 3. 当收到客户端的请求时,解析请求中的URL,获取要播放的mp4文件的路径。 4. 使用Java的NIO API读取mp4文件,将数据写入响应的Channel中,实现流式传输。 5. 客户端收到响应后,使用HTML5的video标签播放mp4文件,实现在线播放。 示例代码如下: ```java public class Mp4StreamingServer { private final int port; public Mp4StreamingServer(int port) { this.port = port; } public void run() throws Exception { EventLoopGroup bossGroup = new NioEventLoopGroup(1); EventLoopGroup workerGroup = new NioEventLoopGroup(); try { ServerBootstrap b = new ServerBootstrap(); b.group(bossGroup, workerGroup) .channel(NioServerSocketChannel.class) .childHandler(new ChannelInitializer<SocketChannel>() { @Override public void initChannel(SocketChannel ch) throws Exception { ChannelPipeline pipeline = ch.pipeline(); pipeline.addLast(new HttpServerCodec()); pipeline.addLast(new HttpObjectAggregator(65536)); pipeline.addLast(new ChunkedWriteHandler()); pipeline.addLast(new Mp4StreamingServerHandler()); } }); ChannelFuture f = b.bind(port).sync(); f.channel().closeFuture().sync(); } finally { bossGroup.shutdownGracefully(); workerGroup.shutdownGracefully(); } } public static void main(String[] args) throws Exception { int port = Integer.parseInt(args[0]); new Mp4StreamingServer(port).run(); } } ``` ```java public class Mp4StreamingServerHandler extends SimpleChannelInboundHandler<FullHttpRequest> { private static final String CONTENT_TYPE = "Content-Type"; private static final String CONTENT_LENGTH = "Content-Length"; private static final String KEEP_ALIVE = "keep-alive"; @Override protected void channelRead0(ChannelHandlerContext ctx, FullHttpRequest request) throws Exception { if (request.method() != HttpMethod.GET) { sendError(ctx, HttpResponseStatus.METHOD_NOT_ALLOWED); return; } String uri = request.uri(); String path = sanitizeUri(uri); if (path == null) { sendError(ctx, HttpResponseStatus.FORBIDDEN); return; } File file = new File(path); if (!file.exists() || file.isHidden() || !file.isFile()) { sendError(ctx, HttpResponseStatus.NOT_FOUND); return; } if (!file.canRead()) { sendError(ctx, HttpResponseStatus.FORBIDDEN); return; } RandomAccessFile raf = new RandomAccessFile(file, "r"); long fileLength = raf.length(); HttpResponse response = new DefaultHttpResponse(HttpVersion.HTTP_1_1, HttpResponseStatus.OK); HttpUtil.setContentLength(response, fileLength); setContentTypeHeader(response, file); if (HttpUtil.isKeepAlive(request)) { response.headers().set(HttpHeaderNames.CONNECTION, HttpHeaderValues.KEEP_ALIVE); } ctx.write(response); ChannelFuture sendFileFuture = ctx.write(new ChunkedFile(raf, 0, fileLength, 8192), ctx.newProgressivePromise()); sendFileFuture.addListener(new ChannelProgressiveFutureListener() { @Override public void operationProgressed(ChannelProgressiveFuture future, long progress, long total) throws Exception { if (total < 0) { System.err.println("Transfer progress: " + progress); } else { System.err.println("Transfer progress: " + progress + " / " + total); } } @Override public void operationComplete(ChannelProgressiveFuture future) throws Exception { System.err.println("Transfer complete."); } }); ChannelFuture lastContentFuture = ctx.writeAndFlush(LastHttpContent.EMPTY_LAST_CONTENT); if (!HttpUtil.isKeepAlive(request)) { lastContentFuture.addListener(ChannelFutureListener.CLOSE); } } private static final Pattern INSECURE_URI = Pattern.compile(".*[<>&\"].*"); private String sanitizeUri(String uri) { try { uri = URLDecoder.decode(uri, "UTF-8"); } catch (UnsupportedEncodingException e) { try { uri = URLDecoder.decode(uri, "ISO-8859-1"); } catch (UnsupportedEncodingException e1) { throw new Error(); } } if (!uri.startsWith("/")) { return null; } uri = uri.replace('/', File.separatorChar); if (uri.contains(File.separator + '.') || uri.contains('.' + File.separator) || uri.startsWith(".") || uri.endsWith(".") || INSECURE_URI.matcher(uri).matches()) { return null; } return System.getProperty("user.dir") + File.separator + uri; } private static void sendError(ChannelHandlerContext ctx, HttpResponseStatus status) { FullHttpResponse response = new DefaultFullHttpResponse(HttpVersion.HTTP_1_1, status, Unpooled.copiedBuffer("Failure: " + status.toString() + "\r\n", CharsetUtil.UTF_8)); response.headers().set(CONTENT_TYPE, "text/plain; charset=UTF-8"); ctx.writeAndFlush(response).addListener(ChannelFutureListener.CLOSE); } private static void setContentTypeHeader(HttpResponse response, File file) { MimetypesFileTypeMap mimeTypesMap = new MimetypesFileTypeMap(); response.headers().set(CONTENT_TYPE, mimeTypesMap.getContentType(file.getPath())); } } ``` 在上面的示例代码中,Mp4StreamingServer类是启动Netty服务器的入口,它创建了一个ServerBootstrap实例,配置了NioEventLoopGroup、NioServerSocketChannel、ChannelInitializer和Mp4StreamingServerHandler等组件,并监听指定的端口,等待客户端连接。 Mp4StreamingServerHandler类是处理请求和响应的核心,它继承了SimpleChannelInboundHandler<FullHttpRequest>,重写了channelRead0方法,用于读取客户端的请求,解析请求中的URL,获取要播放的mp4文件的路径,读取mp4文件并将数据写入响应的Channel中,实现流式传输。同时,如果客户端请求中包含keep-alive头,则在响应中添加该头,以保持连接,避免浪费资源。最后,通过调用ctx.writeAndFlush(LastHttpContent.EMPTY_LAST_CONTENT)方法,通知客户端数据传输完成,释放资源。 总之,使用Netty来处理在线播放mp4请求,可以提高服务器的并发处理能力和吞吐量,同时实现实时流媒体传输,提升用户体验。

相关推荐

最新推荐

recommend-type

使用Netty解决TCP粘包和拆包问题过程详解

Netty是一个流行的Java网络编程框架,提供了简洁、灵活的API来处理网络编程的各种问题。其中,解决TCP粘包和拆包问题是Netty的一个重要应用场景。本文将详细介绍使用Netty解决TCP粘包和拆包问题的过程。 TCP粘包和...
recommend-type

物联网netty对接socket设备-netty定义

简单来讲,Netty是一个提供了易于使用的API的客户端/服务端框架。Netty并发非常高,一个非阻塞的IO,Netty传输速度也非常快,因为他是0拷贝,什么是零拷贝?NIO中的特性之一就是零拷贝,在Java中,内存分为堆和栈...
recommend-type

springboot整合netty过程详解

DiscardServer类主要负责启动Netty服务,ChildChannelHandler类主要负责处理网络IO事件,DiscardServerHandler类主要负责处理业务逻辑。 三、问题解决 在整合SpringBoot和Netty的过程中,我们可能会遇到一些问题,...
recommend-type

SpringBoot整合Netty心跳机制过程详解

Netty 是一个高性能的 NIO 网络框架,通过使用 Netty 可以实现高效的网络通信。SpringBoot 是一个基于 Java 的框架,通过整合 Netty 可以实现高效的网络通信。 在 SpringBoot 中整合 Netty 心跳机制的主要步骤包括...
recommend-type

地县级城市建设道路清扫保洁面积 道路清扫保洁面积道路机械化清扫保洁面积 省份 城市.xlsx

数据含省份、行政区划级别(细分省级、地级市、县级市)两个变量,便于多个角度的筛选与应用 数据年度:2002-2022 数据范围:全693个地级市、县级市、直辖市城市,含各省级的汇总tongji数据 数据文件包原始数据(由于多年度指标不同存在缺失值)、线性插值、回归填补三个版本,提供您参考使用。 其中,回归填补无缺失值。 填补说明: 线性插值。利用数据的线性趋势,对各年份中间的缺失部分进行填充,得到线性插值版数据,这也是学者最常用的插值方式。 回归填补。基于ARIMA模型,利用同一地区的时间序列数据,对缺失值进行预测填补。 包含的主要城市: 通州 石家庄 藁城 鹿泉 辛集 晋州 新乐 唐山 开平 遵化 迁安 秦皇岛 邯郸 武安 邢台 南宫 沙河 保定 涿州 定州 安国 高碑店 张家口 承德 沧州 泊头 任丘 黄骅 河间 廊坊 霸州 三河 衡水 冀州 深州 太原 古交 大同 阳泉 长治 潞城 晋城 高平 朔州 晋中 介休 运城 永济 .... 等693个地级市、县级市,含省级汇总 主要指标:
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。