请在注释处填入正确代码,能够进行结巴分词import jieba def data_preprocess(corpus): data_set = [] ####填结巴分词代码 return data_set

时间: 2024-04-06 12:35:14 浏览: 97
import jieba def data_preprocess(corpus): data_set = [] for text in corpus: seg_list = jieba.cut(text) data_set.append(" ".join(seg_list)) return data_set
相关问题

中文新闻评论分类任务##结巴分词 import jieba def data_preprocess(corpus): data_set = [] ####填结巴分词代码 return data_set train_corpus = data_preprocess(train_ds) test_corpus = data_preprocess(test_ds) print(train_corpus[:2]) print(test_corpus[:2])

这段代码使用了Python中的结巴分词库对语料进行了预处理,将语料分成了词的序列。具体来说,代码首先定义了一个函数`data_preprocess(corpus)`,该函数接收一个语料列表作为输入,并返回一个处理后的语料列表`data_set`。在函数内部,首先使用`for`循环遍历输入的语料`corpus`,然后使用结巴分词库对每一条语料进行分词处理,将分好词的语料添加到一个新的列表`data_set`中。最后,函数返回经过处理后的语料列表`data_set`。在该代码中,分词过程的具体实现并未给出,需要读者自行编写代码实现。 在代码的后面,使用上述函数对训练集和测试集进行了预处理,并输出了处理后的前两条语料。

中文新闻评论分类任务结巴分词补全下面代码import jieba def data_preprocess(corpus): data_set = [] ####填结巴分词代码 return data_set train_corpus = data_preprocess(train_ds) test_corpus = data_preprocess(test_ds) print(train_corpus[:2]) print(test_corpus[:2])

好的,补全代码如下: ```python import jieba def data_preprocess(corpus): data_set = [] for text, label in corpus: # 使用 jieba 分词库对文本进行分词 word_list = jieba.lcut(text) # 将分好词的文本和标签添加到列表中 data_set.append((word_list, label)) return data_set # 使用示例 train_ds = [("这是一篇关于机器学习的文章。", "科技"), ("这是一篇关于自然语言处理的文章。", "科技"), ("北京时间今天凌晨,2022年卡塔尔世界杯亚洲区预选赛结束了最后一轮比赛的争夺。", "体育"), ("国家卫健委今日通报,8月1日0时至24时,31个省(自治区、直辖市)和新疆生产建设兵团报告新增确诊病例98例,其中境外输入病例68例,本土病例30例;无新增死亡病例;新增疑似病例2例,均为境外输入病例。", "时政")] test_ds = [("这是一篇关于人工智能的文章。", "科技"), ("中国女排在东京奥运会上夺得了金牌。", "体育"), ("国家卫健委今日通报,8月2日0时至24时,31个省(自治区、直辖市)和新疆生产建设兵团报告新增确诊病例98例,其中境外输入病例68例,本土病例30例;无新增死亡病例;新增疑似病例2例,均为境外输入病例。", "时政")] train_corpus = data_preprocess(train_ds) test_corpus = data_preprocess(test_ds) print(train_corpus[:2]) print(test_corpus[:2]) ``` 在这段代码中,我们将原始的训练集和测试集转换为了分好词的语料列表。具体来说,我们定义了一个`data_preprocess`函数,使用 jieba 分词库对每条语料进行分词处理,将分好词的语料和对应的标签打包成一个元组,最终添加到一个新的列表中。在该代码中,我们将训练集和测试集转换为了分好词的语料列表,并输出了前两条语料以及它们对应的标签。
阅读全文

相关推荐

解释代码 #加载数据 path_absolute_log = r"F:\数据处理比赛\BDC2023\处理数据log" paths_log_file = os.listdir(path_absolute_log) #获取绝对路径 def make_paths_absolute(paths_file): path_absolute = path_absolute_log paths_absolute_file = os.path.join(path_absolute,paths_file) return paths_absolute_file paths_absolute_log_file = list(map(make_paths_absolute,paths_log_file)) #对表格处理 path_absolute_log_file = r"F:\数据处理比赛\BDC2023\处理数据log\4ff8b802-0d87-11ee-af51-525400d4ffe4_log.csv" def form_data(path_absolute_log_file): data_log = pd.read_csv(path_absolute_log_file) data_log.insert(data_log.shape[1], 'id_score', np.nan) data_log.insert(data_log.shape[1], 'id', os.path.basename(path_absolute_log_file)[:-8]) data_log_message = data_log['message'] def jieba_data(data): data_log_jieba_message = [] data_log_jieba_message.append(','.join(jieba.cut_for_search(data))) print(data_log_jieba_message) return data_log_jieba_message data_log_jieba_message = data_log_message.map(jieba_data) def form_work(data): feature_words = ['bug','ERROR','WARNING','error','WARN','empty','错误','失败','未登录'] set_data = set(str(data)[2:-2].split(',')) set_feature_words = set(feature_words) set_mysql = set('mysql') score = [] if set_data.intersection(set_feature_words): score.append() if set_mysql.intersection(set_feature_words): score.append('LTE4MDK5Mzk2NjU1NiM1ODIONDC=') score = str(score)[2:-2] print(score) return score data_log['id_score'] = data_log_jieba_message.map(form_work) return data_log data_log = form_data(path_absolute_log_file)

以下代码中使用的方法,哪些属于研究方法,请点明在该研究方法下具体使用的是什么方法:以下使用的代码中的方法,包含了哪些研究方法,并指出说明:import pandas as pd data = pd.read_excel(r'C:\Users\apple\Desktop\“你会原谅伤害过你的父母吗”话题爬虫文件.xlsx') data = data.iloc[:,4] data = data.rename("评论") ###--------------------数据清洗-------------------- ##去除微博话题引用 import re new_data = [] # 用于存放处理后的数据 for d in data: new_d = re.sub(r'#.+?#', '', d) # 使用正则表达式去除两个“#”之间的内容 new_data.append(new_d) data['评论'] = new_data ##去除停用词 import nltk from nltk.corpus import stopwords nltk.download('stopwords') # 下载停用词列表,如果已经下载可忽略此步骤 stop_words = set(stopwords.words('chinese')) # 加载英文停用词列表 data1 = [] # 用于存放处理后的数据 for d in new_data: words = d.lower().split() # 将文本转换为小写并分词 new_words = [word for word in words if word not in stop_words] # 过滤停用词 new_d = ' '.join(new_words) # 将处理后的词语连接成字符串 data1.append(new_d) new_data = data1 ##去除特殊字符 # 定义正则表达式 pattern = re.compile('[^\u4e00-\u9fa5^a-z^A-Z^0-9^ ^,^.^!^?^;^\u3002^\uFF1F^\uFF01^\u3001]') # 遍历list中的每个元素,使用re.sub函数将字符串中匹配正则表达式的部分替换为空字符串 for i in range(len(new_data)): new_data[i] = re.sub(pattern, '', new_data[i]) ##英文翻译成中文 from translate import Translator translator= Translator(to_lang="zh") for i in range(len(new_data)): # 判断文本中是否含有英文单词,如果有则翻译成中文 if re.search('[a-zA-Z]', new_data[i]): new_data[i] = translator.translate(new_data[i]) ##jieba分词 import jieba import jieba.analyse data_list =

以下使用的代码中的方法,包含了哪些研究方法:###--------------------读取原始数据-------------------- import pandas as pd data = pd.read_excel(r'C:\Users\apple\Desktop\“你会原谅伤害过你的父母吗”话题爬虫文件.xlsx') data = data.iloc[:,4] data = data.rename("评论") ###--------------------数据清洗-------------------- ##去除微博话题引用 import re new_data = [] # 用于存放处理后的数据 for d in data: new_d = re.sub(r'#.+?#', '', d) # 使用正则表达式去除两个“#”之间的内容 new_data.append(new_d) data['评论'] = new_data ##去除停用词 import nltk from nltk.corpus import stopwords nltk.download('stopwords') # 下载停用词列表,如果已经下载可忽略此步骤 stop_words = set(stopwords.words('chinese')) # 加载英文停用词列表 data1 = [] # 用于存放处理后的数据 for d in new_data: words = d.lower().split() # 将文本转换为小写并分词 new_words = [word for word in words if word not in stop_words] # 过滤停用词 new_d = ' '.join(new_words) # 将处理后的词语连接成字符串 data1.append(new_d) new_data = data1 ##去除特殊字符 # 定义正则表达式 pattern = re.compile('[^\u4e00-\u9fa5^a-z^A-Z^0-9^ \^,^.^!^?^;^\u3002^\uFF1F^\uFF01^\u3001]') # 遍历list中的每个元素,使用re.sub函数将字符串中匹配正则表达式的部分替换为空字符串 for i in range(len(new_data)): new_data[i] = re.sub(pattern, '', new_data[i]) ##英文翻译成中文 from translate import Translator translator= Translator(to_lang="zh") for i in range(len(new_data)): # 判断文本中是否含有英文单词,如果有则翻译成中文 if re.search('[a-zA-Z]', new_data[i]): new_data[i] = translator.translate(new_data[i]) ##jieba分词 import jieba import jieba.analyse data_list = [jieba.lcut(text) for text in new_data]

import sys import re import jieba import codecs import gensim import numpy as np import pandas as pd def segment(doc: str): stop_words = pd.read_csv('data/stopwords.txt', index_col=False, quoting=3, names=['stopword'], sep='\n', encoding='utf-8') stop_words = list(stop_words.stopword) reg_html = re.compile(r'<[^>]+>', re.S) # 去掉html标签数字等 doc = reg_html.sub('', doc) doc = re.sub('[0-9]', '', doc) doc = re.sub('\s', '', doc) word_list = list(jieba.cut(doc)) out_str = '' for word in word_list: if word not in stop_words: out_str += word out_str += ' ' segments = out_str.split(sep=' ') return segments def doc2vec(file_name, model): start_alpha = 0.01 infer_epoch = 1000 doc = segment(codecs.open(file_name, 'r', 'utf-8').read()) doc_vec_all = model.infer_vector(doc, alpha=start_alpha, steps=infer_epoch) return doc_vec_all # 计算两个向量余弦值 def similarity(a_vect, b_vect): dot_val = 0.0 a_norm = 0.0 b_norm = 0.0 cos = None for a, b in zip(a_vect, b_vect): dot_val += a * b a_norm += a ** 2 b_norm += b ** 2 if a_norm == 0.0 or b_norm == 0.0: cos = -1 else: cos = dot_val / ((a_norm * b_norm) ** 0.5) return cos def test_model(file1, file2): print('导入模型') model_path = 'tmp/zhwk_news.doc2vec' model = gensim.models.Doc2Vec.load(model_path) vect1 = doc2vec(file1, model) # 转成句子向量 vect2 = doc2vec(file2, model) print(sys.getsizeof(vect1)) # 查看变量占用空间大小 print(sys.getsizeof(vect2)) cos = similarity(vect1, vect2) print('相似度:%0.2f%%' % (cos * 100)) if __name__ == '__main__': file1 = 'data/corpus_test/t1.txt' file2 = 'data/corpus_test/t2.txt' test_model(file1, file2)

最新推荐

recommend-type

python使用jieba实现中文分词去停用词方法示例

在Python中处理中文文本时,jieba库是一个非常重要的工具,尤其对于中文分词任务。jieba是一个开源的Python库,专门设计用于处理中文文本,它提供了简单易用的接口和高效的操作方式。本文将详细介绍如何使用jieba库...
recommend-type

Python中文分词工具之结巴分词用法实例总结【经典案例】

结巴分词(Jieba)是一款非常流行的开源中文分词库,它提供了简单易用的API,能够高效地进行中文文本的分词任务。下面将详细介绍结巴分词的安装、基本用法以及在处理中文文件时可能遇到的问题及解决方案。 **1. ...
recommend-type

jieba分词的词性对照表(采用和ictclas兼容的标记法).docx

jieba分词是一款广泛应用于中文文本处理的Python库,它主要功能是对中文文本进行分词。在处理分词任务的同时,jieba还提供了词性标注的功能,这有助于更深入地理解文本的语义结构。jieba的词性标注采用了与ictclas...
recommend-type

【路径规划】乌燕鸥算法栅格地图机器人最短路径规划【含Matlab仿真 2886期】.zip

CSDN Matlab武动乾坤上传的资料均有对应的仿真结果图,仿真结果图均是完整代码运行得出,完整代码亲测可用,适合小白; 1、完整的代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

【路径规划】生物地理算法栅格地图机器人最短路径规划【含Matlab仿真 2914期】.zip

CSDN Matlab武动乾坤上传的资料均有对应的仿真结果图,仿真结果图均是完整代码运行得出,完整代码亲测可用,适合小白; 1、完整的代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

Raspberry Pi OpenCL驱动程序安装与QEMU仿真指南

资源摘要信息:"RaspberryPi-OpenCL驱动程序" 知识点一:Raspberry Pi与OpenCL Raspberry Pi是一系列低成本、高能力的单板计算机,由Raspberry Pi基金会开发。这些单板计算机通常用于教育、电子原型设计和家用服务器。而OpenCL(Open Computing Language)是一种用于编写程序,这些程序可以在不同种类的处理器(包括CPU、GPU和其他处理器)上执行的标准。OpenCL驱动程序是为Raspberry Pi上的应用程序提供支持,使其能够充分利用板载硬件加速功能,进行并行计算。 知识点二:调整Raspberry Pi映像大小 在准备Raspberry Pi的操作系统映像以便在QEMU仿真器中使用时,我们经常需要调整映像的大小以适应仿真环境或为了确保未来可以进行系统升级而留出足够的空间。这涉及到使用工具来扩展映像文件,以增加可用的磁盘空间。在描述中提到的命令包括使用`qemu-img`工具来扩展映像文件`2021-01-11-raspios-buster-armhf-lite.img`的大小。 知识点三:使用QEMU进行仿真 QEMU是一个通用的开源机器模拟器和虚拟化器,它能够在一台计算机上模拟另一台计算机。它可以运行在不同的操作系统上,并且能够模拟多种不同的硬件设备。在Raspberry Pi的上下文中,QEMU能够被用来模拟Raspberry Pi硬件,允许开发者在没有实际硬件的情况下测试软件。描述中给出了安装QEMU的命令行指令,并建议更新系统软件包后安装QEMU。 知识点四:管理磁盘分区 描述中提到了使用`fdisk`命令来检查磁盘分区,这是Linux系统中用于查看和修改磁盘分区表的工具。在进行映像调整大小的过程中,了解当前的磁盘分区状态是十分重要的,以确保不会对现有的数据造成损害。在确定需要增加映像大小后,通过指定的参数可以将映像文件的大小增加6GB。 知识点五:Raspbian Pi OS映像 Raspbian是Raspberry Pi的官方推荐操作系统,是一个为Raspberry Pi量身打造的基于Debian的Linux发行版。Raspbian Pi OS映像文件是指定的、压缩过的文件,包含了操作系统的所有数据。通过下载最新的Raspbian Pi OS映像文件,可以确保你拥有最新的软件包和功能。下载地址被提供在描述中,以便用户可以获取最新映像。 知识点六:内核提取 描述中提到了从仓库中获取Raspberry-Pi Linux内核并将其提取到一个文件夹中。这意味着为了在QEMU中模拟Raspberry Pi环境,可能需要替换或更新操作系统映像中的内核部分。内核是操作系统的核心部分,负责管理硬件资源和系统进程。提取内核通常涉及到解压缩下载的映像文件,并可能需要重命名相关文件夹以确保与Raspberry Pi的兼容性。 总结: 描述中提供的信息详细说明了如何通过调整Raspberry Pi操作系统映像的大小,安装QEMU仿真器,获取Raspbian Pi OS映像,以及处理磁盘分区和内核提取来准备Raspberry Pi的仿真环境。这些步骤对于IT专业人士来说,是在虚拟环境中测试Raspberry Pi应用程序或驱动程序的关键步骤,特别是在开发OpenCL应用程序时,对硬件资源的配置和管理要求较高。通过理解上述知识点,开发者可以更好地利用Raspberry Pi的并行计算能力,进行高性能计算任务的仿真和测试。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Fluent UDF实战攻略:案例分析与高效代码编写

![Fluent UDF实战攻略:案例分析与高效代码编写](https://databricks.com/wp-content/uploads/2021/10/sql-udf-blog-og-1024x538.png) 参考资源链接:[fluent UDF中文帮助文档](https://wenku.csdn.net/doc/6401abdccce7214c316e9c28?spm=1055.2635.3001.10343) # 1. Fluent UDF基础与应用概览 流体动力学仿真软件Fluent在工程领域被广泛应用于流体流动和热传递问题的模拟。Fluent UDF(User-Defin
recommend-type

如何使用DPDK技术在云数据中心中实现高效率的流量监控与网络安全分析?

在云数据中心领域,随着服务的多样化和用户需求的增长,传统的网络监控和分析方法已经无法满足日益复杂的网络环境。DPDK技术的引入,为解决这一挑战提供了可能。DPDK是一种高性能的数据平面开发套件,旨在优化数据包处理速度,降低延迟,并提高网络吞吐量。具体到实现高效率的流量监控与网络安全分析,可以遵循以下几个关键步骤: 参考资源链接:[DPDK峰会:云数据中心安全实践 - 流量监控与分析](https://wenku.csdn.net/doc/1bq8jittzn?spm=1055.2569.3001.10343) 首先,需要了解DPDK的基本架构和工作原理,特别是它如何通过用户空间驱动程序和大
recommend-type

Apache RocketMQ Go客户端:全面支持与消息处理功能

资源摘要信息:"rocketmq-client-go:Apache RocketMQ Go客户端" Apache RocketMQ Go客户端是专为Go语言开发的RocketMQ客户端库,它几乎涵盖了Apache RocketMQ的所有核心功能,允许Go语言开发者在Go项目中便捷地实现消息的发布与订阅、访问控制列表(ACL)权限管理、消息跟踪等高级特性。该客户端库的设计旨在提供一种简单、高效的方式来与RocketMQ服务进行交互。 核心知识点如下: 1. 发布与订阅消息:RocketMQ Go客户端支持多种消息发送模式,包括同步模式、异步模式和单向发送模式。同步模式允许生产者在发送消息后等待响应,确保消息成功到达。异步模式适用于对响应时间要求不严格的场景,生产者在发送消息时不会阻塞,而是通过回调函数来处理响应。单向发送模式则是最简单的发送方式,只负责将消息发送出去而不关心是否到达,适用于对消息送达不敏感的场景。 2. 发送有条理的消息:在某些业务场景中,需要保证消息的顺序性,比如订单处理。RocketMQ Go客户端提供了按顺序发送消息的能力,确保消息按照发送顺序被消费者消费。 3. 消费消息的推送模型:消费者可以设置为使用推送模型,即消息服务器主动将消息推送给消费者,这种方式可以减少消费者轮询消息的开销,提高消息处理的实时性。 4. 消息跟踪:对于生产环境中的消息传递,了解消息的完整传递路径是非常必要的。RocketMQ Go客户端提供了消息跟踪功能,可以追踪消息从发布到最终消费的完整过程,便于问题的追踪和诊断。 5. 生产者和消费者的ACL:访问控制列表(ACL)是一种权限管理方式,RocketMQ Go客户端支持对生产者和消费者的访问权限进行细粒度控制,以满足企业对数据安全的需求。 6. 如何使用:RocketMQ Go客户端提供了详细的使用文档,新手可以通过分步说明快速上手。而有经验的开发者也可以根据文档深入了解其高级特性。 7. 社区支持:Apache RocketMQ是一个开源项目,拥有活跃的社区支持。无论是使用过程中遇到问题还是想要贡献代码,都可以通过邮件列表与社区其他成员交流。 8. 快速入门:为了帮助新用户快速开始使用RocketMQ Go客户端,官方提供了快速入门指南,其中包含如何设置rocketmq代理和名称服务器等基础知识。 在安装和配置方面,用户通常需要首先访问RocketMQ的官方网站或其在GitHub上的仓库页面,下载最新版本的rocketmq-client-go包,然后在Go项目中引入并初始化客户端。配置过程中可能需要指定RocketMQ服务器的地址和端口,以及设置相应的命名空间或主题等。 对于实际开发中的使用,RocketMQ Go客户端的API设计注重简洁性和直观性,使得Go开发者能够很容易地理解和使用,而不需要深入了解RocketMQ的内部实现细节。但是,对于有特殊需求的用户,Apache RocketMQ社区文档和代码库中提供了大量的参考信息和示例代码,可以用于解决复杂的业务场景。 由于RocketMQ的版本迭代,不同版本的RocketMQ Go客户端可能会引入新的特性和对已有功能的改进。因此,用户在使用过程中应该关注官方发布的版本更新日志,以确保能够使用到最新的特性和性能优化。对于版本2.0.0的特定特性,文档中提到的以同步模式、异步模式和单向方式发送消息,以及消息排序、消息跟踪、ACL等功能,是该版本客户端的核心优势,用户可以根据自己的业务需求进行选择和使用。 总之,rocketmq-client-go作为Apache RocketMQ的Go语言客户端,以其全面的功能支持、简洁的API设计、活跃的社区支持和详尽的文档资料,成为Go开发者在构建分布式应用和消息驱动架构时的得力工具。