请在注释处填入正确代码,能够进行结巴分词import jieba def data_preprocess(corpus): data_set = [] ####填结巴分词代码 return data_set

时间: 2024-04-06 16:35:14 浏览: 102
import jieba def data_preprocess(corpus): data_set = [] for text in corpus: seg_list = jieba.cut(text) data_set.append(" ".join(seg_list)) return data_set
相关问题

中文新闻评论分类任务##结巴分词 import jieba def data_preprocess(corpus): data_set = [] ####填结巴分词代码 return data_set train_corpus = data_preprocess(train_ds) test_corpus = data_preprocess(test_ds) print(train_corpus[:2]) print(test_corpus[:2])

这段代码使用了Python中的结巴分词库对语料进行了预处理,将语料分成了词的序列。具体来说,代码首先定义了一个函数`data_preprocess(corpus)`,该函数接收一个语料列表作为输入,并返回一个处理后的语料列表`data_set`。在函数内部,首先使用`for`循环遍历输入的语料`corpus`,然后使用结巴分词库对每一条语料进行分词处理,将分好词的语料添加到一个新的列表`data_set`中。最后,函数返回经过处理后的语料列表`data_set`。在该代码中,分词过程的具体实现并未给出,需要读者自行编写代码实现。 在代码的后面,使用上述函数对训练集和测试集进行了预处理,并输出了处理后的前两条语料。

中文新闻评论分类任务结巴分词补全下面代码import jieba def data_preprocess(corpus): data_set = [] ####填结巴分词代码 return data_set train_corpus = data_preprocess(train_ds) test_corpus = data_preprocess(test_ds) print(train_corpus[:2]) print(test_corpus[:2])

好的,补全代码如下: ```python import jieba def data_preprocess(corpus): data_set = [] for text, label in corpus: # 使用 jieba 分词库对文本进行分词 word_list = jieba.lcut(text) # 将分好词的文本和标签添加到列表中 data_set.append((word_list, label)) return data_set # 使用示例 train_ds = [("这是一篇关于机器学习的文章。", "科技"), ("这是一篇关于自然语言处理的文章。", "科技"), ("北京时间今天凌晨,2022年卡塔尔世界杯亚洲区预选赛结束了最后一轮比赛的争夺。", "体育"), ("国家卫健委今日通报,8月1日0时至24时,31个省(自治区、直辖市)和新疆生产建设兵团报告新增确诊病例98例,其中境外输入病例68例,本土病例30例;无新增死亡病例;新增疑似病例2例,均为境外输入病例。", "时政")] test_ds = [("这是一篇关于人工智能的文章。", "科技"), ("中国女排在东京奥运会上夺得了金牌。", "体育"), ("国家卫健委今日通报,8月2日0时至24时,31个省(自治区、直辖市)和新疆生产建设兵团报告新增确诊病例98例,其中境外输入病例68例,本土病例30例;无新增死亡病例;新增疑似病例2例,均为境外输入病例。", "时政")] train_corpus = data_preprocess(train_ds) test_corpus = data_preprocess(test_ds) print(train_corpus[:2]) print(test_corpus[:2]) ``` 在这段代码中,我们将原始的训练集和测试集转换为了分好词的语料列表。具体来说,我们定义了一个`data_preprocess`函数,使用 jieba 分词库对每条语料进行分词处理,将分好词的语料和对应的标签打包成一个元组,最终添加到一个新的列表中。在该代码中,我们将训练集和测试集转换为了分好词的语料列表,并输出了前两条语料以及它们对应的标签。
阅读全文

相关推荐

解释代码 #加载数据 path_absolute_log = r"F:\数据处理比赛\BDC2023\处理数据log" paths_log_file = os.listdir(path_absolute_log) #获取绝对路径 def make_paths_absolute(paths_file): path_absolute = path_absolute_log paths_absolute_file = os.path.join(path_absolute,paths_file) return paths_absolute_file paths_absolute_log_file = list(map(make_paths_absolute,paths_log_file)) #对表格处理 path_absolute_log_file = r"F:\数据处理比赛\BDC2023\处理数据log\4ff8b802-0d87-11ee-af51-525400d4ffe4_log.csv" def form_data(path_absolute_log_file): data_log = pd.read_csv(path_absolute_log_file) data_log.insert(data_log.shape[1], 'id_score', np.nan) data_log.insert(data_log.shape[1], 'id', os.path.basename(path_absolute_log_file)[:-8]) data_log_message = data_log['message'] def jieba_data(data): data_log_jieba_message = [] data_log_jieba_message.append(','.join(jieba.cut_for_search(data))) print(data_log_jieba_message) return data_log_jieba_message data_log_jieba_message = data_log_message.map(jieba_data) def form_work(data): feature_words = ['bug','ERROR','WARNING','error','WARN','empty','错误','失败','未登录'] set_data = set(str(data)[2:-2].split(',')) set_feature_words = set(feature_words) set_mysql = set('mysql') score = [] if set_data.intersection(set_feature_words): score.append() if set_mysql.intersection(set_feature_words): score.append('LTE4MDK5Mzk2NjU1NiM1ODIONDC=') score = str(score)[2:-2] print(score) return score data_log['id_score'] = data_log_jieba_message.map(form_work) return data_log data_log = form_data(path_absolute_log_file)

以下代码中使用的方法,哪些属于研究方法,请点明在该研究方法下具体使用的是什么方法:以下使用的代码中的方法,包含了哪些研究方法,并指出说明:import pandas as pd data = pd.read_excel(r'C:\Users\apple\Desktop\“你会原谅伤害过你的父母吗”话题爬虫文件.xlsx') data = data.iloc[:,4] data = data.rename("评论") ###--------------------数据清洗-------------------- ##去除微博话题引用 import re new_data = [] # 用于存放处理后的数据 for d in data: new_d = re.sub(r'#.+?#', '', d) # 使用正则表达式去除两个“#”之间的内容 new_data.append(new_d) data['评论'] = new_data ##去除停用词 import nltk from nltk.corpus import stopwords nltk.download('stopwords') # 下载停用词列表,如果已经下载可忽略此步骤 stop_words = set(stopwords.words('chinese')) # 加载英文停用词列表 data1 = [] # 用于存放处理后的数据 for d in new_data: words = d.lower().split() # 将文本转换为小写并分词 new_words = [word for word in words if word not in stop_words] # 过滤停用词 new_d = ' '.join(new_words) # 将处理后的词语连接成字符串 data1.append(new_d) new_data = data1 ##去除特殊字符 # 定义正则表达式 pattern = re.compile('[^\u4e00-\u9fa5^a-z^A-Z^0-9^ ^,^.^!^?^;^\u3002^\uFF1F^\uFF01^\u3001]') # 遍历list中的每个元素,使用re.sub函数将字符串中匹配正则表达式的部分替换为空字符串 for i in range(len(new_data)): new_data[i] = re.sub(pattern, '', new_data[i]) ##英文翻译成中文 from translate import Translator translator= Translator(to_lang="zh") for i in range(len(new_data)): # 判断文本中是否含有英文单词,如果有则翻译成中文 if re.search('[a-zA-Z]', new_data[i]): new_data[i] = translator.translate(new_data[i]) ##jieba分词 import jieba import jieba.analyse data_list =

以下使用的代码中的方法,包含了哪些研究方法:###--------------------读取原始数据-------------------- import pandas as pd data = pd.read_excel(r'C:\Users\apple\Desktop\“你会原谅伤害过你的父母吗”话题爬虫文件.xlsx') data = data.iloc[:,4] data = data.rename("评论") ###--------------------数据清洗-------------------- ##去除微博话题引用 import re new_data = [] # 用于存放处理后的数据 for d in data: new_d = re.sub(r'#.+?#', '', d) # 使用正则表达式去除两个“#”之间的内容 new_data.append(new_d) data['评论'] = new_data ##去除停用词 import nltk from nltk.corpus import stopwords nltk.download('stopwords') # 下载停用词列表,如果已经下载可忽略此步骤 stop_words = set(stopwords.words('chinese')) # 加载英文停用词列表 data1 = [] # 用于存放处理后的数据 for d in new_data: words = d.lower().split() # 将文本转换为小写并分词 new_words = [word for word in words if word not in stop_words] # 过滤停用词 new_d = ' '.join(new_words) # 将处理后的词语连接成字符串 data1.append(new_d) new_data = data1 ##去除特殊字符 # 定义正则表达式 pattern = re.compile('[^\u4e00-\u9fa5^a-z^A-Z^0-9^ \^,^.^!^?^;^\u3002^\uFF1F^\uFF01^\u3001]') # 遍历list中的每个元素,使用re.sub函数将字符串中匹配正则表达式的部分替换为空字符串 for i in range(len(new_data)): new_data[i] = re.sub(pattern, '', new_data[i]) ##英文翻译成中文 from translate import Translator translator= Translator(to_lang="zh") for i in range(len(new_data)): # 判断文本中是否含有英文单词,如果有则翻译成中文 if re.search('[a-zA-Z]', new_data[i]): new_data[i] = translator.translate(new_data[i]) ##jieba分词 import jieba import jieba.analyse data_list = [jieba.lcut(text) for text in new_data]

import sys import re import jieba import codecs import gensim import numpy as np import pandas as pd def segment(doc: str): stop_words = pd.read_csv('data/stopwords.txt', index_col=False, quoting=3, names=['stopword'], sep='\n', encoding='utf-8') stop_words = list(stop_words.stopword) reg_html = re.compile(r'<[^>]+>', re.S) # 去掉html标签数字等 doc = reg_html.sub('', doc) doc = re.sub('[0-9]', '', doc) doc = re.sub('\s', '', doc) word_list = list(jieba.cut(doc)) out_str = '' for word in word_list: if word not in stop_words: out_str += word out_str += ' ' segments = out_str.split(sep=' ') return segments def doc2vec(file_name, model): start_alpha = 0.01 infer_epoch = 1000 doc = segment(codecs.open(file_name, 'r', 'utf-8').read()) doc_vec_all = model.infer_vector(doc, alpha=start_alpha, steps=infer_epoch) return doc_vec_all # 计算两个向量余弦值 def similarity(a_vect, b_vect): dot_val = 0.0 a_norm = 0.0 b_norm = 0.0 cos = None for a, b in zip(a_vect, b_vect): dot_val += a * b a_norm += a ** 2 b_norm += b ** 2 if a_norm == 0.0 or b_norm == 0.0: cos = -1 else: cos = dot_val / ((a_norm * b_norm) ** 0.5) return cos def test_model(file1, file2): print('导入模型') model_path = 'tmp/zhwk_news.doc2vec' model = gensim.models.Doc2Vec.load(model_path) vect1 = doc2vec(file1, model) # 转成句子向量 vect2 = doc2vec(file2, model) print(sys.getsizeof(vect1)) # 查看变量占用空间大小 print(sys.getsizeof(vect2)) cos = similarity(vect1, vect2) print('相似度:%0.2f%%' % (cos * 100)) if __name__ == '__main__': file1 = 'data/corpus_test/t1.txt' file2 = 'data/corpus_test/t2.txt' test_model(file1, file2)

最新推荐

recommend-type

python使用jieba实现中文分词去停用词方法示例

在Python中处理中文文本时,jieba库是一个非常重要的工具,尤其对于中文分词任务。jieba是一个开源的Python库,专门设计用于处理中文文本,它提供了简单易用的接口和高效的操作方式。本文将详细介绍如何使用jieba库...
recommend-type

Python中文分词工具之结巴分词用法实例总结【经典案例】

结巴分词(Jieba)是一款非常流行的开源中文分词库,它提供了简单易用的API,能够高效地进行中文文本的分词任务。下面将详细介绍结巴分词的安装、基本用法以及在处理中文文件时可能遇到的问题及解决方案。 **1. ...
recommend-type

jieba分词的词性对照表(采用和ictclas兼容的标记法).docx

jieba分词是一款广泛应用于中文文本处理的Python库,它主要功能是对中文文本进行分词。在处理分词任务的同时,jieba还提供了词性标注的功能,这有助于更深入地理解文本的语义结构。jieba的词性标注采用了与ictclas...
recommend-type

这是华为手机的汇智动漫AR游戏软件,仅适用于华为手机哦,内无任何广告

这是华为手机的汇智动漫AR游戏软件,仅适用于华为手机哦,内无任何广告
recommend-type

VB图书管理系统(完全可以运行)修改好的(2024ql).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。