lstm_dropout=0和lstm_dropout=0.1区别
时间: 2023-06-14 09:04:33 浏览: 153
LSTM_LSTM_LSTM预测_lstm预测_预测_LSTM预测算法
5星 · 资源好评率100%
在LSTM模型中,dropout是一种正则化方法,用于减少过拟合并提高模型的泛化能力。当lstm_dropout=0时,模型中的LSTM层没有应用dropout正则化,因此模型可能会更容易过拟合。而当lstm_dropout=0.1时,LSTM层应用了10%的dropout正则化,这意味着在每个训练批次中,10%的节点将被随机地“关闭”,这有助于减少过拟合并提高模型的泛化能力。因此,lstm_dropout=0和lstm_dropout=0.1会在LSTM层的训练过程中产生不同的影响,具体取决于数据集和模型的复杂度。
阅读全文