mtsp模拟退火法代码
时间: 2023-07-20 16:01:46 浏览: 123
### 回答1:
MTSP(Multiple Traveling Salesman Problem,多旅行商问题)是指在旅行商问题中,有多个旅行商需要完成任务。模拟退火法(Simulated Annealing)是一种优化算法,用于在解空间中寻找全局最优解。
以下是一个用模拟退火法解决MTSP问题的代码示例:
```python
import random
import math
def calc_distance(city1, city2):
# 计算两个城市之间的距离
x1, y1 = city1
x2, y2 = city2
return math.sqrt((x2 - x1)**2 + (y2 - y1)**2)
def calc_route_distance(route, cities):
# 计算路径总距离
distance = 0
for i in range(len(route)-1):
distance += calc_distance(cities[route[i]], cities[route[i+1]])
return distance
def mtsp_simulated_annealing(cities, n_agents, max_iterations):
best_route = []
best_distance = float('inf')
for _ in range(max_iterations):
# 初始化旅行商路径
routes = []
for _ in range(n_agents):
route = random.sample(range(len(cities)), len(cities))
routes.append(route)
# 计算当前解的总距离
total_distance = sum([calc_route_distance(route, cities) for route in routes])
# 模拟退火过程
temperature = 100
while temperature > 0.1:
# 随机选择两个旅行商路径
agent1, agent2 = random.sample(range(n_agents), 2)
route1, route2 = routes[agent1], routes[agent2]
# 交换两个路径中的两个城市
index1, index2 = random.sample(range(len(cities)), 2)
route1[index1], route1[index2] = route1[index2], route1[index1]
route2[index1], route2[index2] = route2[index2], route2[index1]
# 计算新解的总距离
new_distance = sum([calc_route_distance(route, cities) for route in routes])
# 根据新解和当前解之间的差异,决定是否接受新解
if new_distance < total_distance or random.random() < math.exp((total_distance - new_distance) / temperature):
total_distance = new_distance
else:
# 恢复路径交换前的状态
route1[index1], route1[index2] = route1[index2], route1[index1]
route2[index1], route2[index2] = route2[index2], route2[index1]
# 降低温度
temperature *= 0.99
# 更新最优解
if total_distance < best_distance:
best_route = routes
best_distance = total_distance
return best_route, best_distance
# 测试示例
cities = [(0, 0), (1, 3), (4, 4), (7, 1), (9, 3)]
n_agents = 3
max_iterations = 1000
best_route, best_distance = mtsp_simulated_annealing(cities, n_agents, max_iterations)
print("最优路径:", best_route)
print("最优路径总距离:", best_distance)
```
以上代码实现了一个使用模拟退火法解决MTSP问题的示例。通过随机交换旅行商路径中的城市以探索新解,并根据新解与当前解之间的差异以一定概率接受新解。通过迭代多次,最终找到近似最优的旅行商路径和总距离。
### 回答2:
MTSP(Multiple Traveling Salesman Problem)是指多个旅行商问题,即一组旅行商在经过一系列城市后返回起始城市,求解最短路径和最小代价。模拟退火法(Simulated Annealing)是一种启发式算法,其灵感来源于金属退火过程。下面是MTSP问题的模拟退火法代码的实现:
```python
import random
import math
# 初始化参数
NUM_CITIES = 10 # 城市数量
NUM_SALES_MEN = 2 # 旅行商数量
NUM_ITERATIONS = 1000 # 迭代次数
# 生成随机地图
def generate_map(num_cities):
city_map = []
for _ in range(num_cities):
x = random.uniform(-100, 100)
y = random.uniform(-100, 100)
city_map.append((x, y))
return city_map
# 计算路径总长度
def calculate_distance(city_map, path):
total_distance = 0
for i in range(len(path)):
current_city = city_map[path[i]]
next_city = city_map[path[(i+1) % len(path)]]
distance = math.sqrt((current_city[0]-next_city[0])**2 + (current_city[1]-next_city[1])**2)
total_distance += distance
return total_distance
# 模拟退火算法
def simulated_annealing(city_map, num_sales_men, num_iterations):
# 初始解
best_path = random.sample(range(len(city_map)), len(city_map))
best_distance = calculate_distance(city_map, best_path)
# 迭代搜索
for _ in range(num_iterations):
# 生成新解
new_path = best_path.copy()
for _ in range(num_sales_men):
i = random.randint(0, len(city_map)-2)
j = random.randint(i+1, len(city_map)-1)
new_path[i:j] = reversed(new_path[i:j])
# 计算新解路径长度
new_distance = calculate_distance(city_map, new_path)
# 判断是否接受新解
if new_distance < best_distance:
best_path = new_path
best_distance = new_distance
else:
probability = math.exp((best_distance - new_distance) / num_iterations)
if random.random() < probability:
best_path = new_path
best_distance = new_distance
return best_path, best_distance
# 测试
city_map = generate_map(NUM_CITIES)
best_path, best_distance = simulated_annealing(city_map, NUM_SALES_MEN, NUM_ITERATIONS)
print("最短路径:", best_path)
print("最短路径长度:", best_distance)
```
以上代码实现了MTSP问题的模拟退火法求解过程。首先通过`generate_map`函数生成随机地图,然后通过`simulated_annealing`函数使用模拟退火算法求解最短路径和长度。最后通过打印输出结果。
阅读全文