matlab编写informer进行时间序列预测的代码
时间: 2023-08-13 15:03:28 浏览: 548
以下是一个使用MATLAB编写的时间序列预测的Informer模型的示例代码:
```matlab
% 1. 加载数据
data = load('your_data.mat');
train_data = data.train_data; % 训练数据
valid_data = data.valid_data; % 验证数据
test_data = data.test_data; % 测试数据
% 2. 数据预处理
% 这里假设你已经对数据进行了必要的预处理,例如归一化等
% 3. 构建和训练模型
net = informerTrain(train_data); % 自定义informerTrain函数来构建和训练模型
% 4. 验证模型
y_valid_pred = informerPredict(net, valid_data); % 自定义informerPredict函数来进行验证
% 5. 测试模型
y_test_pred = informerPredict(net, test_data); % 自定义informerPredict函数来进行测试
% 6. 结果可视化
figure;
plot(valid_data, 'b', 'LineWidth', 1.5);
hold on;
plot(y_valid_pred, 'r--', 'LineWidth', 1.5);
legend('实际值', '预测值');
title('验证结果');
figure;
plot(test_data, 'b', 'LineWidth', 1.5);
hold on;
plot(y_test_pred, 'r--', 'LineWidth', 1.5);
legend('实际值', '预测值');
title('测试结果');
```
这里的代码仅提供一个简单的框架,你需要根据自己的需求和数据进行相应的修改和补充。其中,`informerTrain`和`informerPredict`函数需要根据你选择的Informer模型进行自定义实现,包括模型的构建、训练和预测过程。
在代码中,我们假设数据已经通过`load`函数加载,并且进行了必要的预处理。然后,我们使用训练数据来构建和训练Informer模型,使用验证数据来验证模型的性能,最后使用测试数据进行模型的测试。最后,我们使用`plot`函数将实际值和预测值进行可视化比较。
请注意,这只是一个示例代码,具体实现取决于你选择的Informer模型和数据集。你需要根据你的自定义模型和数据集进行相应的调整。
阅读全文