deep \\\\&cross network pytorch代码
时间: 2023-10-01 08:07:22 浏览: 265
深度交叉网络(Deep Cross Network, DCN)是一种用于显式学习交叉特征的模型。它由两部分组成:Cross Network和Deep Network。其中,Cross Network被用来高效地学习交叉特征,而Deep Network则用来学习深层次的非线性特征。
以下是一个使用PyTorch实现的深度交叉网络的代码示例:
```python
import torch
import torch.nn as nn
class CrossNetwork(nn.Module):
def __init__(self, layer_num, input_dim):
super(CrossNetwork, self).__init__()
self.layer_num = layer_num
self.cross_weights = nn.ParameterList([nn.Parameter(torch.rand(input_dim, 1)) for _ in range(layer_num)])
self.cross_bias = nn.ParameterList([nn.Parameter(torch.rand(input_dim, 1)) for _ in range(layer_num)])
def forward(self, x):
x_0 = torch.unsqueeze(x, dim=2)
x = x_0.clone()
x_T = x_0.clone().permute((0, 2, 1))
for i in range(self.layer_num):
x = torch.matmul(torch.bmm(x_0, x_T), self.cross_weights[i]) + self.cross_bias[i]
x_T = x.clone().permute((0, 2, 1))
x = torch.squeeze(x)
return x
class DeepCrossNetwork(nn.Module):
def __init__(self, input_dim, cross_layer_num, deep_layer_sizes):
super(DeepCrossNetwork, self).__init__()
self.cross_network = CrossNetwork(cross_layer_num, input_dim)
self.deep_network = nn.Sequential(
阅读全文