acgan pytorch
时间: 2023-09-28 20:10:17 浏览: 136
ACGAN stands for Auxiliary Classifier Generative Adversarial Networks. It is a type of generative model that uses deep neural networks to generate new data samples that mimic a given dataset. ACGANs also have an auxiliary classifier that helps to generate samples with specific attributes or labels.
PyTorch is a popular deep learning framework used for building and training neural networks. PyTorch provides a simple and efficient way to build ACGAN models.
To build an ACGAN in PyTorch, you would typically:
1. Define the generator and discriminator networks using PyTorch's nn.Module class.
2. Implement the loss functions for the generator and discriminator networks.
3. Train the ACGAN model using PyTorch's built-in optimization functions and training loops.
Here is an example of PyTorch code for building an ACGAN:
```
import torch
import torch.nn as nn
import torch.optim as optim
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
# define generator network architecture
def forward(self, z, y):
# generate new samples based on noise vector z and label y
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
# define discriminator network architecture
def forward(self, x, y):
# classify whether input x is real or fake based on label y
# define loss functions
adversarial_loss = nn.BCELoss()
auxiliary_loss = nn.CrossEntropyLoss()
# initialize generator and discriminator networks
generator = Generator()
discriminator = Discriminator()
# define optimizer for each network
optimizer_G = optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizer_D = optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))
# train ACGAN model
for epoch in range(num_epochs):
for i, (real_images, real_labels) in enumerate(data_loader):
# train discriminator with real images
discriminator.zero_grad()
real_validity = discriminator(real_images, real_labels)
real_loss = adversarial_loss(real_validity, torch.ones(real_validity.size()).cuda())
real_loss.backward()
# train discriminator with fake images
z = torch.randn(batch_size, latent_dim).cuda()
fake_labels = torch.randint(0, num_classes, (batch_size,)).cuda()
fake_images = generator(z, fake_labels).detach()
fake_validity = discriminator(fake_images, fake_labels)
fake_loss = adversarial_loss(fake_validity, torch.zeros(fake_validity.size()).cuda())
fake_loss.backward()
# train generator
generator.zero_grad()
gen_images = generator(z, fake_labels)
gen_validity = discriminator(gen_images, fake_labels)
gen_loss = adversarial_loss(gen_validity, torch.ones(gen_validity.size()).cuda())
aux_loss = auxiliary_loss(fake_labels, fake_labels)
g_loss = gen_loss + aux_loss
g_loss.backward()
# update discriminator and generator parameters
optimizer_D.step()
optimizer_G.step()
# print training progress
print("[Epoch %d/%d] [Batch %d/%d] D_loss: %.4f G_loss: %.4f" % (epoch+1, num_epochs, i+1, len(data_loader), (real_loss+fake_loss).item(), g_loss.item()))
```
In the above code, we define a Generator and Discriminator network, loss functions, and optimizers. We then train the ACGAN model by alternating between training the discriminator and generator networks on batches of real and fake data samples. The generator network is trained to generate new samples that fool the discriminator network, while also generating samples with specific attributes or labels.
阅读全文