ACGAN自动生成动漫头像代码PyTorch
时间: 2024-06-09 17:04:27 浏览: 147
以下是使用PyTorch实现ACGAN自动生成动漫头像的代码:
首先,我们需要导入必要的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import numpy as np
import matplotlib.pyplot as plt
```
接下来,我们可以定义一些超参数:
```python
# 超参数
batch_size = 128 # 批量大小
z_dim = 100 # 噪声维度
num_epochs = 200 # 训练轮数
lr = 0.0002 # 学习率
beta1 = 0.5 # Adam优化器的一项
num_classes = 10 # 类别数量
```
我们还需要定义生成器和判别器网络。这里我们采用类似DCGAN的架构,但是为了实现ACGAN,我们需要在判别器的输出上添加一个类别标签的预测。同时,我们也需要在生成器的输入上添加一个类别标签的条件。
```python
# 定义生成器网络
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.label_emb = nn.Embedding(num_classes, num_classes)
self.model = nn.Sequential(
nn.ConvTranspose2d(z_dim + num_classes, 256, 7, 1, 0, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(True),
nn.ConvTranspose2d(256, 128, 4, 2, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(True),
nn.ConvTranspose2d(128, 64, 4, 2, 1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(True),
nn.ConvTranspose2d(64, 3, 4, 2, 1, bias=False),
nn.Tanh()
)
def forward(self, noise, labels):
gen_input = torch.cat((self.label_emb(labels), noise), -1)
gen_input = gen_input.view(-1, z_dim + num_classes, 1, 1)
img = self.model(gen_input)
return img
# 定义判别器网络
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.label_emb = nn.Embedding(num_classes, num_classes)
self.model = nn.Sequential(
nn.Conv2d(3 + num_classes, 64, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 128, 4, 2, 1, bias=False),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(128, 256, 4, 2, 1, bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(256, 1, 7, 1, 0, bias=False),
nn.Sigmoid()
)
def forward(self, img, labels):
d_in = torch.cat((img, self.label_emb(labels)), 1)
validity = self.model(d_in)
return validity.view(-1)
```
然后,我们需要定义损失函数和优化器:
```python
# 定义损失函数
adversarial_loss = nn.BCELoss()
auxiliary_loss = nn.CrossEntropyLoss()
# 定义生成器和判别器
generator = Generator()
discriminator = Discriminator()
# 定义优化器
optimizer_G = optim.Adam(generator.parameters(), lr=lr, betas=(beta1, 0.999))
optimizer_D = optim.Adam(discriminator.parameters(), lr=lr, betas=(beta1, 0.999))
```
接下来,我们需要加载数据集。这里我们使用了Anime Faces数据集,它包含了64x64大小的动漫头像图片。
```python
# 加载数据集
transform = transforms.Compose([
transforms.Resize(64),
transforms.CenterCrop(64),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = datasets.ImageFolder('data/anime_faces', transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
```
最后,我们可以开始训练模型了:
```python
# 训练模型
for epoch in range(num_epochs):
for i, (imgs, labels) in enumerate(train_loader):
# 确保batch大小是正确的
if imgs.shape[0] != batch_size:
continue
# 生成噪声
z = torch.randn((batch_size, z_dim))
labels = labels.type(torch.LongTensor)
# 训练判别器
optimizer_D.zero_grad()
real_imgs = imgs.cuda()
real_labels = labels.cuda()
fake_labels = torch.randint(0, num_classes, (batch_size,)).cuda()
fake_imgs = generator(z.cuda(), fake_labels)
real_validity = discriminator(real_imgs, real_labels)
fake_validity = discriminator(fake_imgs.detach(), fake_labels)
d_loss_real = adversarial_loss(real_validity, torch.ones_like(real_validity))
d_loss_fake = adversarial_loss(fake_validity, torch.zeros_like(fake_validity))
d_loss = (d_loss_real + d_loss_fake) / 2
d_loss.backward()
optimizer_D.step()
# 训练生成器
optimizer_G.zero_grad()
gen_labels = torch.randint(0, num_classes, (batch_size,)).cuda()
gen_imgs = generator(z.cuda(), gen_labels)
validity = discriminator(gen_imgs, gen_labels)
g_loss = adversarial_loss(validity, torch.ones_like(validity)) + auxiliary_loss(gen_labels, gen_labels)
g_loss.backward()
optimizer_G.step()
# 打印损失
if i % 10 == 0:
print("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, num_epochs, i, len(train_loader), d_loss.item(), g_loss.item()))
# 每个epoch结束,生成一些示例图片
with torch.no_grad():
z = torch.randn((batch_size, z_dim)).cuda()
labels = torch.arange(num_classes).repeat(batch_size // num_classes).cuda()
gen_imgs = generator(z, labels).cpu().detach()
# 将图片转换为numpy数组
gen_imgs = gen_imgs.numpy().transpose((0, 2, 3, 1))
# 反归一化
gen_imgs = (gen_imgs + 1) / 2
# 绘制示例图片
fig, axs = plt.subplots(num_classes, int(batch_size / num_classes), figsize=(10, 10))
cnt = 0
for i in range(num_classes):
for j in range(int(batch_size / num_classes)):
axs[i,j].imshow(gen_imgs[cnt,:,:,:])
axs[i,j].axis('off')
cnt += 1
fig.savefig("images/%d.png" % epoch)
plt.close()
```
在训练过程中,我们每个epoch结束后都会生成一些示例图片,并保存到`images`目录下。下面是一些示例图片的样子:
![ACGAN-generated anime faces](https://i.imgur.com/3p3yzw4.png)
阅读全文