matlab解线性方程组迭代法
时间: 2023-11-08 11:05:28 浏览: 131
Matlab解线性方程组迭代法是一种数值计算方法,用于求解线性方程组。它通过迭代计算来逐步逼近方程组的解,直到满足一定的精度要求为止。常见的迭代法有Jacobi迭代法和Gauss-Seidel迭代法,其中Jacobi迭代法是一种简单的迭代法,而Gauss-Seidel迭代法则是Jacobi迭代法的改进版,可以更快地收敛。此外,还有SOR方法,它使用Gauss-Seidel迭代法的求解方向,并使用过松弛以加快收敛速度。
下面是Matlab实现Jacobi迭代法的示例代码:
```matlab
function x = jacobi(a,b,k)
n=length(b);
d=diag(a);
r=a-diag(d);
x=zeros(n,1);
for j = 1:k
x = (b-r*x)./d;
end
```
下面是Matlab实现SOR方法的示例代码:
```matlab
function r = SOR(A,B,w,varargin)
sizeA=size(A);
sizev=size(varargin);
if sizev(2) == 0
rol = 0.000001;
n = 1000;
x = zeros(sizeA(1),1);
elseif sizev(2) == 1
rol = varargin{1};
n = 1000;
x = zeros(sizeA(1),1);
elseif sizev(2) == 2
rol = varargin{1};
n = varargin{2};
x = zeros(sizeA(1),1000);
elseif sizev(2) == 3
rol = varargin{1};
n = varargin{2};
x = varargin{3};
else
error("输入参数过多");
end
for i = 2:n
for j = 1:sizeA(2)
sum1=0;
for k = 1:j
if j == k
sum1 = sum1 - w*(1-1/w)*x(k,i-1);
continue;
end
sum1 = sum1 - w*x(k,i)*A(j,k)/A(j,j);
end
for k = j+1:sizeA(1)
sum1 = sum1 - w*x(k,i-1)*A(j,k)/A(j,j);
end
x(j,i)=w*B(j)/A(j,j)+sum1;
end
if any(abs(x(:,i)-x(:,i-1))>rol) == 0
break;
end
end
r = x;
```
阅读全文