浙商银行软件测试面试

时间: 2024-02-07 17:02:48 浏览: 35
根据提供的引用内容,浙商银行软件测试面试的具体流程和问题可能会有所不同。但一般来说,银行的软件测试面试会涉及以下几个方面: 1. 技术能力:面试官可能会问关于软件测试的基本概念、测试方法和工具的问题。例如,他们可能会问你如何编写测试用例、如何进行功能测试和性能测试,以及你熟悉的测试工具和框架。 2. 项目经验:面试官可能会询问你在以往的项目中的具体测试经验。他们可能会问你参与过的项目类型、你在项目中承担的角色和责任,以及你在项目中遇到的挑战和解决方案。 3. 自我介绍:面试官可能会要求你简要介绍自己,包括你的教育背景、工作经验和技能。他们可能会问你为什么选择软件测试作为职业,并询问你对软件测试的理解和看法。 4. 沟通能力:银行的软件测试岗位通常需要与开发人员、产品经理和其他团队成员进行有效的沟通和协作。因此,面试官可能会评估你的沟通能力和团队合作能力。 5. 面试者提问:面试官通常会给你提供机会提问。你可以询问关于岗位职责、团队文化、晋升机会等方面的问题,以更好地了解该岗位和公司。 请注意,以上只是一般情况下的面试内容,具体的面试流程和问题可能会因公司和岗位要求而有所不同。
相关问题

股票浙商银行的探索性使用至少2种Python量化投资技术(一种趋势型如SMA、EMA,一种均值回归型如RSI、MFI)对数据进行测试的代码是

好的,以下是使用Python量化投资库backtrader进行探索性回测的代码示例,包括SMA和RSI两种指标,以浙商银行股票(股票代码为601916)为例: ```python import backtrader as bt import backtrader.feeds as btfeeds from datetime import datetime # 创建策略类 class MyStrategy(bt.Strategy): params = ( ('sma_period', 20), # SMA指标的时间周期 ('rsi_period', 14), # RSI指标的时间周期 ) def __init__(self): self.sma = bt.indicators.SMA(period=self.params.sma_period) # 创建SMA指标 self.rsi = bt.indicators.RSI(period=self.params.rsi_period) # 创建RSI指标 def next(self): if self.sma > self.data.close: self.buy() # 当SMA上穿股价时买入 elif self.sma < self.data.close: self.sell() # 当SMA下穿股价时卖出 if self.rsi > 70: self.sell() # 当RSI超过70时卖出 elif self.rsi < 30: self.buy() # 当RSI低于30时买入 # 加载数据 cerebro = bt.Cerebro() data = btfeeds.YahooFinanceData(dataname='601916.SS', fromdate=datetime(2010, 1, 1), todate=datetime(2021, 1, 1)) cerebro.adddata(data) # 添加策略 cerebro.addstrategy(MyStrategy) # 设置初始资金100000人民币 cerebro.broker.setcash(100000.0) # 设置交易手续费为0.1% cerebro.broker.setcommission(commission=0.001) # 运行回测 cerebro.run() # 输出回测结果 print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue()) cerebro.plot() ``` 在上面的代码中,使用了backtrader库来加载浙商银行股票数据、创建策略和运行回测。策略类中,使用了SMA和RSI两种指标进行交易决策。在回测时,设置了初始资金和交易手续费,并输出了回测结果和图表。

在tushare中获取浙商银行股票的Date,Open,High,Low,Close ,Adj Close,Volume的数据并保存在Excel表格中的代码是

好的,下面是获取浙商银行股票数据并保存为Excel文件的Python代码: ```python import tushare as ts # 获取浙商银行股票数据 df = ts.get_k_data('601916', ktype='D', autype='qfq', start='20200101', end='20210630') # 选择需要的列 df = df[['date', 'open', 'high', 'low', 'close', 'adj_close', 'volume']] # 将数据保存为Excel文件 df.to_excel('浙商银行股票数据.xlsx', index=False) ``` 其中: - `get_k_data` 函数用于获取股票数据,参数说明如下: - `'601916'`:浙商银行股票代码 - `ktype='D'`:数据类型为日线数据 - `autype='qfq'`:复权类型为前复权 - `start='20200101'`:数据起始日期为2020年1月1日 - `end='20210630'`:数据结束日期为2021年6月30日 - `[['date', 'open', 'high', 'low', 'close', 'adj_close', 'volume']]` 选择需要的列 - `to_excel` 函数将数据保存为Excel文件,`index=False` 表示不保存行索引。

相关推荐

最新推荐

机器学习的算法(python).zip

机器学习的算法(python).zip

4K Desert Sand Materials 4K高清沙漠沙材质包Unity游戏素材美术资源unitypackage

4K Desert Sand Materials 4K高清沙漠沙材质包Unity游戏素材美术资源unitypackage 支持Unity版本2019.3.1或更高 沙。它是粗糙的、粗糙的、令人恼火的。它无处不在。我使用伊拉克沙漠沙子的个人照片参考,使用程序材质创作工具来制作这些真实的可平铺 4K 沙漠沙子材料。 该产品比“风格化”材质更真实、更细致,也比基于摄影测量的材质更具绘画性,它包括 5 种独特的沙子材质,旨在模拟细沙、粗沙、岩石沙、沙路和硬质沙子。 每种材质都有四种 4K 纹理,包括环境光遮挡、反照率、金属和法线贴图。高度图和平滑度被打包到金属的绿色和 Alpha 通道中。

机器学习实战代码基于python3实现.zip

众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。

南京理工大学机器学习与人工智能选修课程大作业备份.zip

众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。

论文初稿1.docx

论文初稿1.docx

面 向 对 象 课 程 设 计(很详细)

本次面向对象课程设计项目是由西安工业大学信息与计算科学051002班级的三名成员常丽雪、董园园和刘梦共同完成的。项目的题目是设计一个ATM银行系统,旨在通过该系统实现用户的金融交易功能。在接下来的一个星期里,我们团队共同致力于问题描述、业务建模、需求分析、系统设计等各个方面的工作。 首先,我们对项目进行了问题描述,明确了项目的背景、目的和主要功能。我们了解到ATM银行系统是一种自动提款机,用户可以通过该系统实现查询余额、取款、存款和转账等功能。在此基础上,我们进行了业务建模,绘制了系统的用例图和活动图,明确了系统与用户之间的交互流程和功能流程,为后续设计奠定了基础。 其次,我们进行了需求分析,对系统的功能性和非功能性需求进行了详细的梳理和分析。我们明确了系统的基本功能模块包括用户认证、账户管理、交易记录等,同时也考虑到了系统的性能、安全性和可靠性等方面的需求。通过需求分析,我们确立了项目的主要目标和设计方向,为系统的后续开发工作奠定了基础。 接着,我们进行了系统的分析工作,对系统进行了功能分解、结构分析和行为分析。我们对系统的各个模块进行了详细的设计,明确了模块之间的关联和交互关系,保证系统的整体性和稳定性。通过系统分析,我们为系统的设计和实现提供了详细的思路和指导,确保系统的功能和性能达到用户的需求和期望。 最后,我们进行了系统的设计工作,绘制了系统的体系结构图、类图和时序图等,明确了系统的整体架构和各个模块的具体实现方式。我们根据需求分析和系统分析的结果,结合面向对象设计的原则和方法,设计出了一个高效、稳定和灵活的ATM银行系统。通过系统设计,我们为系统的后续开发和调试提供了具体的设计方案和指导。 综上所述,通过本次面向对象课程设计项目,我们不仅学习到了面向对象设计的理论知识和实践技能,也掌握了团队合作和系统开发的经验。通过不懈努力和合作,我们成功完成了ATM银行系统的设计工作,为系统的后续开发和实现奠定了坚实的基础。希望通过这次设计项目的实践,我们能够更好地理解和应用面向对象设计的方法和思想,为未来的学习和工作打下坚实的基础。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

Python标签编码错误对程序造成的影响

# 1. Python标签编码错误的介绍 #### 1.1 Python编码问题的概述 编码问题在Python开发中是一个常见而又棘手的难题。首先,我们需了解什么是编码问题,即数据在不同编码方式下出现混乱或乱码的情况。Python中对编码有着复杂的定义和处理方式。因为Python 3默认采用Unicode编码,但在实际应用中仍会遇到编码错误的情况。 #### 1.2 常见的Python编码错误 Python编码错误主要包括解析错误、UnicodeDecodeError错误和UnicodeEncodeError错误。解析错误通常是因为源代码文件的编码格式与Python解释器期望的格式不一致。

那我该怎么获取端口呢,需不需要付费之类

获取端口的方法取决于你选择的部署方式。以下是一些常见的部署选项: 1. 本地部署:如果你想在本地环境中运行 HackChat,你可以选择一个未被占用的端口号。常用的端口号范围是 1024 到 65535。确保你选择的端口没有被其他应用程序使用。 2. 云平台:如果你选择使用云平台(如 AWS、Azure、Google Cloud 等)部署 HackChat,你需要查看该云平台的文档以了解如何分配和获取端口。通常,云平台会根据你的配置为你分配一个端口号。这可能需要一些费用,具体取决于你选择的服务和计划。 3. 共享主机:如果你选择使用共享主机(如 Heroku、Netlify 等)部署 H

复杂可编程逻辑器件ppt课件.ppt

可编程逻辑器件(PLD)是一种由用户根据自己要求来构造逻辑功能的数字集成电路。与传统的具有固定逻辑功能的74系列数字电路不同,PLD本身并没有确定的逻辑功能,而是可以由用户利用计算机辅助设计,例如通过原理图或硬件描述语言(HDL)来表示设计思想。通过编译和仿真,生成相应的目标文件,再通过编程器或下载电缆将设计文件配置到目标器件中,这样可编程器件(PLD)就可以作为满足用户需求的专用集成电路使用。 在PLD的基本结构中,包括与门阵列(AND-OR array)、或门阵列(OR array)、可编程互连线路(interconnect resources)和输入/输出结构。与门阵列和或门阵列是PLD的核心部分,用于实现逻辑功能的组合,并配合互连线路连接各个部件。PLD的输入/输出结构用于与外部设备进行通信,完成数据输入和输出的功能。 除了PLD,还有复杂可编程器件(CPLD)、现场可编程门阵列(FPGA)和系统可编程逻辑器件(ispPAC)等不同类型的可编程逻辑器件。这些器件在逻辑功能实现、资源密度、时钟分配等方面有所不同,可以根据具体应用需求选择合适的器件类型。 对于可编程逻辑器件的设计流程,一般包括需求分析、设计规划、逻辑设计、综合与优化、布局布线、仿真验证和最终生成目标文件等步骤。设计师需要根据具体的需求和功能要求,使用适当的工具和方法完成各个阶段的设计工作,最终实现满足用户要求的可编程逻辑器件设计。 通过学习可编程逻辑器件的分类、特点、基本结构、工作原理和设计流程,可以更深入地了解数字集成电路的设计和实现原理,提高工程师的设计能力和应用水平。可编程逻辑器件的灵活性和可重复编程能力,使其在电子产品的设计与开发中具有重要的作用,不仅可以加快产品研发的速度,还可以降低成本和提高可维护性。 总的来说,可编程逻辑器件是一种灵活可定制的数字集成电路,可以根据用户需求实现不同的逻辑功能。通过适当的设计流程和工具支持,可以高效地完成器件的设计和验证工作,从而实现更加智能、功能更强大的电子产品。深入了解和掌握可编程逻辑器件的原理和应用,对于提升工程师的技术水平和创新能力具有重要意义。