adam 和sgd是什么优化器
时间: 2024-06-03 12:06:04 浏览: 194
Adam和SGD都是深度学习中常用的优化器。
SGD是随机梯度下降法的缩写,它是最基本的优化器之一。它通过计算每个参数的梯度,并将其与学习率相乘来更新参数。然而,SGD有一个缺点,即当数据集中存在大量相似的样本时,更新的方向很可能会偏离全局最优点。
Adam是一种自适应学习率优化算法,其核心思想是对每个参数计算一个适应性学习率。它利用每个时间步的梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。这使得Adam比SGD更适合于处理大量相似样本的数据集,并且能够更快地收敛到全局最优点。
相关问题
adam优化器和sgd优化器
Adam优化器和SGD(Stochastic Gradient Descent)优化器是深度学习中常用的两种优化算法,它们有以下几个方面的不同:
1. 学习率:SGD优化器通常需要手动设置学习率,而Adam优化器可以自适应地调整每个参数的学习率,从而更好地适应不同参数的梯度变化情况。
2. 动量:SGD优化器可以使用动量来加速梯度下降过程,而Adam优化器不需要使用动量,因为它已经包含了一阶和二阶矩估计,可以自适应地调整每个参数的更新量。
3. 参数更新方式:SGD优化器的参数更新方式比较简单,只需要根据当前参数的梯度和学习率来更新参数;而Adam优化器需要维护每个参数的一阶和二阶矩估计,并根据这些估计来计算每个参数的更新量。
4. 计算量:由于Adam优化器需要维护每个参数的一阶和二阶矩估计,因此计算量比SGD优化器更大。
总体来说,Adam优化器相对于SGD优化器具有更快的收敛速度和更好的泛化性能,但计算量较大。在深度学习中,通常会使用Adam优化器作为默认的优化算法,但在某些情况下,SGD优化器也可能会更好地适应一些数据集和模型。
Adam优化器和SGD优化器
Adam优化器和SGD优化器都是常用的深度神经网络优化器,它们在训练神经网络时起到了至关重要的作用。
SGD优化器(Stochastic Gradient Descent)是最基本的优化器,它的思想是利用梯度信息来更新网络的参数,使得损失函数逐渐降低。SGD优化器的缺点是可能会陷入局部最优解,而且在学习率比较大的时候容易出现震荡,导致训练不稳定。
Adam优化器(Adaptive Moment Estimation)结合了动量梯度下降和RMSProp优化器的优点,并且具有自适应调节学习率的特点。Adam优化器相对于SGD优化器,更加适合应对大规模数据和高维参数的情况。它具有以下特点:
1. 自适应调节学习率:Adam优化器可以根据每个参数的梯度大小自适应调节学习率,每个参数都有自己的学习率,从而有效避免了SGD优化器的学习率问题。
2. 动量梯度下降:Adam优化器使用了动量梯度下降的思想,可以加速训练过程,提高收敛速度。
3. 二阶矩估计:Adam优化器还引入了二阶矩估计,可以更好地适应不同方向的梯度,从而提高优化的效果。
总的来说,Adam优化器相对于SGD优化器,具有更好的性能和更快的收敛速度,特别是在大规模数据和高维参数的情况下更为适用。但是,在小样本数据上,SGD优化器也有着良好的表现。因此,在使用优化器的时候,需要根据实际情况进行选择。
阅读全文