vae pytorch代码实现
时间: 2023-10-12 21:05:56 浏览: 186
VAE-pytorch:VAE的pytorch实施
下面是一个使用PyTorch实现Variational Autoencoder (VAE)的简单代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchvision import datasets, transforms
# 定义VAE模型
class VAE(nn.Module):
def __init__(self):
super(VAE, self).__init__()
self.fc1 = nn.Linear(784, 400)
self.fc21 = nn.Linear(400, 20) # 均值
self.fc22 = nn.Linear(400, 20) # 方差
self.fc3 = nn.Linear(20, 400)
self.fc4 = nn.Linear(400, 784)
def encode(self, x):
h1 = F.relu(self.fc1(x))
return self.fc21(h1), self.fc22(h1)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def decode(self, z):
h3 = F.relu(self.fc3(z))
return torch.sigmoid(self.fc4(h3))
def forward(self, x):
mu, logvar = self.encode(x.view(-1, 784))
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
# 计算VAE的损失函数
def loss_function(recon_x, x, mu, logvar):
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum')
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
# 加载MNIST数据集
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.ToTensor()),
batch_size=128, shuffle=True)
# 初始化VAE模型和优化器
model = VAE()
optimizer = optim.Adam(model.parameters(), lr=1e-3)
# 训练VAE模型
def train(epoch):
model.train()
train_loss = 0
for batch_idx, (data, _) in enumerate(train_loader):
optimizer.zero_grad()
recon_batch, mu, logvar = model(data)
loss = loss_function(recon_batch, data, mu, logvar)
loss.backward()
train_loss += loss.item()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader),
loss.item() / len(data)))
print('====> Epoch: {} Average loss: {:.4f}'.format(
epoch, train_loss / len(train_loader.dataset)))
# 使用训练好的VAE生成一些样本
def generate_samples(num_samples):
with torch.no_grad():
sample = torch.randn(num_samples, 20)
sample = model.decode(sample).cpu()
return sample
# 开始训练和生成样本
num_epochs = 10
for epoch in range(1, num_epochs + 1):
train(epoch)
samples = generate_samples(10)
```
这个代码示例实现了一个简单的VAE模型,使用MNIST数据集进行训练和生成样本。你可以根据实际情况进行修改和扩展。
阅读全文