pythonGPU双精度算力测试代码
时间: 2024-09-28 10:00:43 浏览: 51
DDRNet.pytorch:这是用于道路场景的实时和精确语义分割的深度双分辨率网络的非官方代码。 无需使用推断加速和额外数据,即可在城市景观和camvid上实现精度与速度之间的最新权衡
在Python中,如果你想要测试GPU的双精度浮点数(通常指单精度为float64)计算能力,你可以利用深度学习库如PyTorch或TensorFlow提供的功能。下面是一个简单的例子,使用PyTorch:
```python
import torch
# 检查可用的GPU设备及其CUDA版本
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Running on {device}: CUDA version {torch.version.cuda}")
# 创建一个大的张量并将其移动到GPU上
large_tensor = torch.randn(1024, 1024).double().to(device)
start_time = torch.cuda.Event(enable_timing=True)
end_time = torch.cuda.Event(enable_timing=True)
# 执行一次双精度浮点运算,例如矩阵乘法
with torch.no_grad():
start_time.record()
result = torch.matmul(large_tensor, large_tensor.t())
end_time.record()
# 等待所有事件完成计时
torch.cuda.synchronize()
# 计算时间
time_taken = start_time.elapsed_time(end_time) / 1e3
print(f"Time taken for a double precision matrix multiplication: {time_taken:.6f} ms")
阅读全文