cross+attention
时间: 2024-01-07 19:04:14 浏览: 107
Cross-attention是Transformer中的一种注意力机制,用于处理输入序列之间的交互。在Cross-attention中,查询(Q)和键(K)来自不同的输入序列,而值(V)仍然来自同一序列。Cross-attention的计算方式为:$Attention(Q,K,V)=softmax(\frac{QK^T}{\sqrt{d_k}})V$,其中$d_k$是键向量的维度。Cross-attention可以用于多模态任务,如图像字幕生成和视频描述生成等。
以下是一个使用PyTorch实现的Cross-attention的例子:
```python
import torch
import torch.nn as nn
class CrossAttention(nn.Module):
def __init__(self, query_dim, key_dim, value_dim):
super(CrossAttention, self).__init__()
self.query_dim = query_dim
self.key_dim = key_dim
self.value_dim = value_dim
self.query_linear = nn.Linear(query_dim, key_dim)
self.key_linear = nn.Linear(key_dim, query_dim)
self.value_linear = nn.Linear(value_dim, query_dim)
def forward(self, query, key, value):
Q = self.query_linear(query)
K = self.key_linear(key)
V = self.value_linear(value)
attention_weights = torch.matmul(Q, K.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.key_dim).float())
attention_weights = torch.softmax(attention_weights, dim=-1)
output = torch.matmul(attention_weights, V)
return output
```
阅读全文