anaconda jupyter opencv

时间: 2023-07-16 08:02:58 浏览: 109
DOC

通过miniconda+jupyter lab的形式带大家安装opencv

### 回答1: Anaconda是一个用于科学计算的Python发行版,它包含了许多常用的科学计算库和工具。Anaconda的目标是简化Python环境的安装和管理,使科学家和数据分析师能够更轻松地使用Python进行科学计算和数据分析。 Jupyter是一个交互式的计算环境,它可以让开发者以笔记本形式进行编程和数据探索。通过Jupyter,我们可以编写和运行Python代码、展示数据可视化、撰写文档等。Jupyter的灵活性和可视化功能使其成为数据科学和机器学习领域非常受欢迎的工具。 OpenCV是一个用于计算机视觉和图像处理的开源库。它提供了大量的图像处理和计算机视觉算法,可以用于图像分析、特征提取、图像识别等领域。OpenCV支持多种编程语言,包括Python,通过使用OpenCV可以方便地进行图像处理和计算机视觉任务。 综合起来,Anaconda提供了Python的科学计算环境,而Jupyter则为我们提供了一个交互式的计算环境,而OpenCV为我们提供了图像处理和计算机视觉的算法库。通过使用Anaconda可以方便地管理和安装相关库和工具,而使用Jupyter可以方便地进行代码编写和数据可视化,而使用OpenCV可以方便地进行图像处理和计算机视觉任务。这三者的结合,为我们提供了强大的科学计算和图像处理的工具链。 ### 回答2: Anaconda是一个开源的Python发行版本,它包含了许多用于科学计算和数据分析的库和工具。Anaconda提供了一个可视化的环境管理器,可以用来安装和管理Python包和依赖。 Jupyter是一个基于Web的交互式计算环境,它支持多种编程语言,其中包括Python。Jupyter提供了一个Notebook界面,可以将代码、文档和可视化内容结合在一起,并且可以通过浏览器进行访问和共享。 OpenCV是一个开源的计算机视觉库,它提供了许多用于图像处理和计算机视觉任务的函数和工具。OpenCV可以用于图像获取、处理、分析、以及对象识别和跟踪等任务。它支持多种编程语言,包括Python。 Anaconda、Jupyter和OpenCV在科学计算和数据分析领域都有广泛的应用。通过使用Anaconda,可以方便地安装和管理OpenCV等库。而借助Jupyter的交互式计算环境,可以更加高效地进行图像处理和计算机视觉任务的开发和调试。同时,可以通过Jupyter的Notebook界面,将代码和结果以及注释和说明结合在一起,便于代码的分享和复用。 综上所述,Anaconda、Jupyter和OpenCV是三个在科学计算和数据分析领域非常有用的工具和库,它们可以一起使用,相互补充,提高开发效率和代码可读性。 ### 回答3: Anaconda是一个流行的Python数据科学平台,它集成了许多常用的数据科学库和工具。Anaconda包括一个包管理系统,使得安装和管理各种包变得更加简便。通过Anaconda,用户可以轻松地搭建自己的Python环境,并方便地管理所需的包。 Jupyter是一个开源的Web应用程序,它提供了一个交互式的计算环境,支持多种编程语言。Jupyter的主要特点是它以“笔记本”的形式组织代码、文本和图形输出。用户可以在笔记本中编写代码,并实时查看代码运行的结果。Jupyter非常适用于展示和分享数据分析、机器学习和数据可视化的工作。 OpenCV是一个开源的计算机视觉库,它提供了很多用于处理图像和视频的函数和算法。OpenCV广泛应用于计算机视觉、图像处理、视频分析等领域。通过OpenCV可以进行图像的读取、处理、计算机视觉任务的实现等。它支持多种编程语言,包括Python。 Anaconda, Jupyter和OpenCV之间的关系是,Anaconda提供了一个方便的平台搭建环境,允许用户安装和管理OpenCV等数据科学包。用户可以使用Jupyter作为Anaconda提供的一种交互式环境来编写代码、展示和分享数据处理、机器学习和计算机视觉的工作。通过Anaconda的包管理系统,用户可以轻松地安装和配置OpenCV,并且可以轻松地分享和共享使用Jupyter编写的数据处理和计算机视觉代码。
阅读全文

相关推荐

7z
code_001 | [图片读取与显示](python/code_001/opencv_001.py) | ✔️ code_002 | [图片灰度化](python/code_002/opencv_002.py) | ✔️ code_003 | [图像创建与赋值](python/code_003/opencv_003.py) | ✔️ code_004 | [图像像素读写](python/code_004/opencv_004.py) | ✔️ code_005 | [图像像素算术操作(加减乘除)](python/code_005/opencv_005.py) | ✔️ code_006 | [图像伪彩色增强](python/code_006/opencv_006.py) | ✔️ code_007 | [图像像素操作(逻辑操作)](python/code_007/opencv_007.py) | ✔️ code_008 | [图像通道分离合并](python/code_008/opencv_008.py) | ✔️ code_009 | [色彩空间与色彩空间转换](python/code_009/opencv_009.py) | ✏️ code_010 | [图像像素值统计](python/code_010/opencv_010.py) | ✔️ code_011 | [图像像素归一化](python/code_011/opencv_011.py) | ✔️ code_012 | [视频读写](python/code_012/opencv_012.py) | ✔️ code_013 | [图像翻转](python/code_013/opencv_013.py) | ✔️ code_014 | [图像插值](python/code_014/opencv_014.py) | ✔️ code_015 | [绘制几何形状](python/code_015/opencv_015.py) | ✔️ code_016 | [图像ROI与ROI操作](python/code_016/opencv_016.py) | ✔️ code_017 | [图像直方图](python/code_017/opencv_017.py) | ✔️ code_018 | [图像直方图均衡化](python/code_018/opencv_018.py) | ✏️ code_019 | [图像直方图比较](python/code_019/opencv_019.py) | ✔️ code_020 | [图像直方图反向投影](python/code_020/opencv_020.py) | ✔️ code_021 | [图像卷积操作](python/code_021/opencv_021.py) | ✔️ code_022 | [图像均值与高斯模糊](python/code_022/opencv_022.py) | ❣️ code_023 | [中值模糊](python/code_023/opencv_023.py) | ✔️ code_024 | [图像噪声](python/code_024/opencv_024.py) | ✔️ code_025 | [图像去噪声](python/code_025/opencv_025.py) | ✔️ code_026 | [高斯双边模糊](python/code_026/opencv_026.py) | ✔️ code_027 | [均值迁移模糊(mean-shift blur)](python/code_027/opencv_027.py) | ✔️ code_028 | [图像积分图算法](python/code_028/opencv_028.py) | ✔️ code_029 | [快速的图像边缘滤波算法](python/code_029/opencv_029.py) | ✔️ code_030 | [自定义滤波器](python/code_030/opencv_030.py) | ✔️ code_031 | [Sobel算子](python/code_031/opencv_031.py) | ✔️ code_032 | [更多梯度算子](python/code_032/opencv_032.py) | ✔️ code_033 | [拉普拉斯算子(二阶导数算子)](python/code_033/opencv_033.py) | ✔️ code_034 | [图像锐化](python/code_034/opencv_034.py) | ✔️ code_035 | [USM 锐化增强算法](python/code_035/opencv_035.py) | ✔️ code_036 | [Canny边缘检测器](python/code_036/opencv_036.py) | ❣️ code_037 | [图像金字塔](python/code_037/opencv_037.py) | ✔️ code_038 | [拉普拉斯金字塔](python/code_038/opencv_038.py) | ✔️ code_039 | [图像模板匹配](python/code_039/opencv_039.py) | ✔️ code_040 | [二值图像介绍](python/code_040/opencv_040.py) | ✔️ code_041 | [基本阈值操作](python/code_041/opencv_041.py) | ✔️ code_042 | [图像二值寻找法OTSU](python/code_042/opencv_042.py) | ✏️ code_043 | [图像二值寻找法TRIANGLE](python/code_043/opencv_043.py) | ✔️ code_044 | [图像自适应阈值算法](python/code_044/opencv_044.py) | ✏️ code_045 | [图像二值与去噪](python/code_045/opencv_045.py) | ✏️ code_046 | [图像连通组件寻找](python/code_046/opencv_046.py) | ✔️ code_047 | [图像连通组件状态统计](python/code_047/opencv_047.py) | ✔️ code_048 | [轮廓寻找](python/code_048/opencv_048.py) | ❣️ code_049 | [轮廓外接矩形](python/code_049/opencv_049.py) | ❣️ code_050 | [轮廓矩形面积与弧长](python/code_050/opencv_050.py) | ✏️ code_051 | [轮廓逼近](python/code_051/opencv_051.py) | ✔️ code_052 | [几何矩计算中心](python/code_052/opencv_052.py) | ✔️ code_053 | [使用Hu矩阵实现轮廓匹配](python/code_053/opencv_053.py) | ✔️ code_054 | [轮廓圆与椭圆拟合](python/code_054/opencv_054.py) | ✔️ code_055 | [凸包检测](python/code_055/opencv_055.py) | ✏️ code_056 | [直线拟合与极值点寻找](python/code_056/opencv_056.py) | ✔️ code_057 | [点多边形测试](python/code_057/opencv_057.py) | ✔️ code_058 | [寻找最大内接圆](python/code_058/opencv_058.py) | ✔️ code_059 | [霍夫曼直线检测](python/code_059/opencv_059.py) | ✔️ code_060 | [概率霍夫曼直线检测](python/code_060/opencv_060.py) | ❣️ code_061 | [霍夫曼圆检测](python/code_061/opencv_061.py) | ❣️ code_062 | [膨胀和腐蚀](python/code_062/opencv_062.py) | ❣️ code_063 | [结构元素](python/code_063/opencv_063.py) | ✔️ code_064 | [开运算](python/code_064/opencv_064.py) | ✏️ code_065 | [闭运算](python/code_065/opencv_065.py) | ✏️ code_066 | [开闭运算的应用](python/code_066/opencv_066.py) | ✏️ code_067 | [顶帽](python/code_067/opencv_067.py) | ✔️ code_068 | [黑帽](python/code_068/opencv_068.py) | ✔️ code_069 | [图像梯度](python/code_069/opencv_069.py) | ✔️ code_070 | [基于梯度的轮廓发现](python/code_070/opencv_070.py) | ✏️ code_071 | [击中击不中](python/code_071/opencv_071.py) | ✔️ code_072 | [缺陷检测1](python/code_072) | ✔️ code_073 | [缺陷检测2](python/code_073/opencv_073.py) | ✔️ code_074 | [提取最大轮廓和编码关键点](python/code_074) | ✔️ code_075 | [图像修复](python/code_075/opencv_075.py) | ✔️ code_076 | [图像透视变换应用](python/code_076/opencv_076.py) | ✏️ code_077 | [视频读写和处理](python/code_077/opencv_077.py) | ✏️ code_078 | [识别与跟踪视频中的特定颜色对象](python/code_078) | ✔️ code_079 | [视频分析-背景/前景 提取](python/code_079/opencv_079.py) | ✔️ code_080 | [视频分析–背景消除与前景ROI提取](python/code_080) | ✔️ code_081 | [角点检测-Harris角点检测](python/code_081) | ✔️ code_082 | [角点检测-Shi-Tomas角点检测](python/code_082) | ✏️ code_083 | [角点检测-亚像素角点检测](python/code_083) | ✔️ code_084 | [视频分析-KLT光流跟踪算法-1](python/code_084) | ✏️ code_085 | [视频分析-KLT光流跟踪算法-2](python/code_085) | ✏️ code_086 | [视频分析-稠密光流分析](python/code_086) | ✏️ code_087 | [视频分析-帧差移动对象分析](python/code_087/opencv_087.py) | ✔️ code_088 | [视频分析-均值迁移](python/code_088) | ✏️ code_089 | [视频分析-连续自适应均值迁移](python/code_089) | ✏️ code_090 | [视频分析-对象移动轨迹绘制](python/code_090) | ✔️ code_091 | [对象检测-HAAR级联分类器](python/code_091) | ✔️ code_092 | [对象检测-HAAR特征分析](python/code_092) | ✔️ code_093 | [对象检测-LBP特征分析](python/code_093/opencv_093.py) | ✔️ code_094 | [ORB 特征关键点检测](python/code_094) | ✏️ code_095 | [ORB 特征描述子匹配](python/code_095) | ✔️ code_096 | [多种描述子匹配方法](python/code_096) | ✏️ code_097 | [基于描述子匹配的已知对象定位](python/code_097) | ✏️ code_098 | [SIFT 特征关键点检测](python/code_097) | ✔️ code_099 | [SIFT 特征描述子匹配](python/code_097) | ✔️ code_100 | [HOG 行人检测](python/code_100/opencv_100.py) | ✔️ code_101 | [HOG 多尺度检测](python/code_101/opencv_101.py) | ✏️ code_102 | [HOG 提取描述子](python/code_102/opencv_102.py) | ✔️ code_103 | [HOG 使用描述子生成样本数据](python/code_103/opencv_103.py) | ✔️ code_104 | [(检测案例)-HOG+SVM 训练](python/code_104/opencv_104.py) | ✔️ code_105 | [(检测案例)-HOG+SVM 预测](python/code_105/opencv_105.py) | ✔️ code_106 | [AKAZE 特征与描述子](python/code_106) | ✔️ code_107 | [Brisk 特征与描述子](python/code_107) | ✔️ code_108 | [GFTT关键点检测](python/code_108) | ✔️ code_109 | [BLOB 特征分析](python/code_109) | ✔️

最新推荐

recommend-type

解压软件 ZArchiver.apk

解压软件 ZArchiver.apk
recommend-type

毕设项目:基于SSM框架+mysql开发的教务管理系统分前后台【附含源码+数据库+毕业论文】

二、技术实现 后端:spring,springmvc,mybatis,mysql 前端采用:vue,css 运行环境及开发工具:jdk8,idea或者eclipse,Navicat 三、系统功能 系统登录角色分为:管理员、老师、学生 用户登录 用户注册 首页 个人中心 修改密码 个人信息 班级管理 成绩类型管理 公告类型管理 教程类型管理 第几节管理 院系管理 职称管理 专业管理 公告管理 课程管理 成绩管理等功能
recommend-type

MATLAB实现小波阈值去噪:Visushrink硬软算法对比

资源摘要信息:"本资源提供了一套基于MATLAB实现的小波阈值去噪算法代码。用户可以通过运行主文件"project.m"来执行该去噪算法,并观察到对一张256x256像素的黑白“莱娜”图片进行去噪的全过程。此算法包括了添加AWGN(加性高斯白噪声)的过程,并展示了通过Visushrink硬阈值和软阈值方法对图像去噪的对比结果。此外,该实现还包括了对图像信噪比(SNR)的计算以及将噪声图像和去噪后的图像的打印输出。Visushrink算法的参考代码由M.Kiran Kumar提供,可以在Mathworks网站上找到。去噪过程中涉及到的Lipschitz指数计算,是基于Venkatakrishnan等人的研究,使用小波变换模量极大值(WTMM)的方法来测量。" 知识点详细说明: 1. MATLAB环境使用:本代码要求用户在MATLAB环境下运行。MATLAB是一种高性能的数值计算和可视化环境,广泛应用于工程计算、算法开发和数据分析等领域。 2. 小波阈值去噪:小波去噪是信号处理中的一个技术,用于从信号中去除噪声。该技术利用小波变换将信号分解到不同尺度的子带,然后根据信号与噪声在小波域中的特性差异,通过设置阈值来消除或减少噪声成分。 3. Visushrink算法:Visushrink算法是一种小波阈值去噪方法,由Donoho和Johnstone提出。该算法的硬阈值和软阈值是两种不同的阈值处理策略,硬阈值会将小波系数小于阈值的部分置零,而软阈值则会将这部分系数缩减到零。硬阈值去噪后的信号可能有更多震荡,而软阈值去噪后的信号更为平滑。 4. AWGN(加性高斯白噪声)添加:在模拟真实信号处理场景时,通常需要对原始信号添加噪声。AWGN是一种常见且广泛使用的噪声模型,它假设噪声是均值为零、方差为N0/2的高斯分布,并且与信号不相关。 5. 图像处理:该实现包含了图像处理的相关知识,包括图像的读取、显示和噪声添加。此外,还涉及了图像去噪前后视觉效果的对比展示。 6. 信噪比(SNR)计算:信噪比是衡量信号质量的一个重要指标,反映了信号中有效信息与噪声的比例。在图像去噪的过程中,通常会计算并比较去噪前后图像的SNR值,以评估去噪效果。 7. Lipschitz指数计算:Lipschitz指数是衡量信号局部变化复杂性的一个量度,通常用于描述信号在某个尺度下的变化规律。在小波去噪过程中,Lipschitz指数可用于确定是否保留某个小波系数,因为它与信号的奇异性相关联。 8. WTMM(小波变换模量极大值):小波变换模量极大值方法是一种小波分析技术,用于检测信号中的奇异点或边缘。该技术通过寻找小波系数模量极大值的变化来推断信号的局部特征。 9. 系统开源:该资源被标记为“系统开源”,意味着该MATLAB代码及其相关文件是可以公开访问和自由使用的。开源资源为研究人员和开发者提供了学习和实验的机会,有助于知识共享和技术发展。 资源的文件结构包括"Wavelet-Based-Denoising-MATLAB-Code-master",表明用户获取的是一套完整的项目文件夹,其中包含了执行小波去噪算法所需的所有相关文件和脚本。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【交互特征的影响】:分类问题中的深入探讨,如何正确应用交互特征

![【交互特征的影响】:分类问题中的深入探讨,如何正确应用交互特征](https://img-blog.csdnimg.cn/img_convert/21b6bb90fa40d2020de35150fc359908.png) # 1. 交互特征在分类问题中的重要性 在当今的机器学习领域,分类问题一直占据着核心地位。理解并有效利用数据中的交互特征对于提高分类模型的性能至关重要。本章将介绍交互特征在分类问题中的基础重要性,以及为什么它们在现代数据科学中变得越来越不可或缺。 ## 1.1 交互特征在模型性能中的作用 交互特征能够捕捉到数据中的非线性关系,这对于模型理解和预测复杂模式至关重要。例如
recommend-type

c语言从链式队列 中获取头部元素并返回其状态的函数怎么写

在 C 语言中,如果你有一个链式队列的数据结构,通常它会包含两个指针,一个指向队首(front),一个指向队尾(rear)。以下是一个简单的链式队列头部元素获取函数的示例,假设 `Queue` 是你的链式队列结构体,并且已经包含了必要的成员变量: ```c typedef struct Queue { void* data; // 存储数据的指针 struct Queue* front; // 队首指针 struct Queue* rear; // 队尾指针 } Queue; // 获取头部元素并检查是否为空(如果队列为空,返回 NULL 或适当错误值) void*
recommend-type

易语言实现画板图像缩放功能教程

资源摘要信息:"易语言是一种基于中文的编程语言,主要面向中文用户,其特点是使用中文关键词和语法结构,使得中文使用者更容易理解和编写程序。易语言画板图像缩放源码是易语言编写的程序代码,用于实现图形用户界面中的画板组件上图像的缩放功能。通过这个源码,用户可以调整画板上图像的大小,从而满足不同的显示需求。它可能涉及到的图形处理技术包括图像的获取、缩放算法的实现以及图像的重新绘制等。缩放算法通常可以分为两大类:高质量算法和快速算法。高质量算法如双线性插值和双三次插值,这些算法在图像缩放时能够保持图像的清晰度和细节。快速算法如最近邻插值和快速放大技术,这些方法在处理速度上更快,但可能会牺牲一些图像质量。根据描述和标签,可以推测该源码主要面向图形图像处理爱好者或专业人员,目的是提供一种方便易用的方法来实现图像缩放功能。由于源码文件名称为'画板图像缩放.e',可以推断该文件是一个易语言项目文件,其中包含画板组件和图像处理的相关编程代码。" 易语言作为一种编程语言,其核心特点包括: 1. 中文编程:使用中文作为编程关键字,降低了学习编程的门槛,使得不熟悉英文的用户也能够编写程序。 2. 面向对象:易语言支持面向对象编程(OOP),这是一种编程范式,它使用对象及其接口来设计程序,以提高软件的重用性和模块化。 3. 组件丰富:易语言提供了丰富的组件库,用户可以通过拖放的方式快速搭建图形用户界面。 4. 简单易学:由于语法简单直观,易语言非常适合初学者学习,同时也能够满足专业人士对快速开发的需求。 5. 开发环境:易语言提供了集成开发环境(IDE),其中包含了代码编辑器、调试器以及一系列辅助开发工具。 6. 跨平台:易语言支持在多个操作系统平台编译和运行程序,如Windows、Linux等。 7. 社区支持:易语言有着庞大的用户和开发社区,社区中有很多共享的资源和代码库,便于用户学习和解决编程中遇到的问题。 在处理图形图像方面,易语言能够: 1. 图像文件读写:支持常见的图像文件格式如JPEG、PNG、BMP等的读取和保存。 2. 图像处理功能:包括图像缩放、旋转、裁剪、颜色调整、滤镜效果等基本图像处理操作。 3. 图形绘制:易语言提供了丰富的绘图功能,包括直线、矩形、圆形、多边形等基本图形的绘制,以及文字的输出。 4. 图像缩放算法:易语言实现的画板图像缩放功能中可能使用了特定的缩放算法来优化图像的显示效果和性能。 易语言画板图像缩放源码的实现可能涉及到以下几个方面: 1. 获取画板上的图像:首先需要从画板组件中获取到用户当前绘制或已经存在的图像数据。 2. 图像缩放算法的应用:根据用户的需求,应用适当的图像缩放算法对获取的图像数据进行处理。 3. 图像重新绘制:处理后的图像数据需要重新绘制到画板上,以实现缩放后的效果。 4. 用户交互:提供用户界面,让用户能够通过按钮、滑块等控件选择缩放比例和模式,以及触发缩放操作。 5. 性能优化:为了确保图像缩放操作流畅,需要考虑代码的执行效率和资源的合理利用。 在易语言社区中,用户可以根据自己的需求修改和扩展画板图像缩放源码,或者根据提供的API进一步开发更多高级图像处理功能,从而丰富软件的功能和用户体验。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【交互特征:优化与调试的艺术】:实战技巧,提升回归模型与分类模型的性能

![【交互特征:优化与调试的艺术】:实战技巧,提升回归模型与分类模型的性能](https://ask.qcloudimg.com/http-save/yehe-8871522/e113209d8f0e317542ca15c510d91a73.png) # 1. 回归模型与分类模型的理论基础 ## 1.1 回归模型与分类模型的区别 回归模型和分类模型是机器学习中最基础的两类监督学习算法,它们在处理问题的本质上存在显著不同。 - **分类模型**:旨在通过数据集中的已知类别(标签)来预测新数据的类别。例如,邮件过滤器将邮件分类为垃圾邮件或正常邮件,或者根据用户的点击行为预测用户是否会购买某个
recommend-type

用IDEA写一个高速收费系统框架附带代码

创建一个高速收费系统的框架涉及到几个步骤,这里我将以 IntelliJ IDEA(一种流行的 Java IDE)为例,简要概述一下如何构建一个基础框架,并提供一些关键代码片段。我们将用到Spring Boot作为主要的框架,因为它简化了设置和部署。 1. **初始化项目**: - 打开IntelliJ IDEA,选择"Create New Project",然后选择"Maven"并勾选"Spring Initializr"。 - 输入项目名称和依赖项,例如`highway-toll-system`,并添加Spring Web、Spring Data JPA以及相关的数据库驱动。