如何在python中通过k折交叉验证实现lasso最佳参数的选择
时间: 2024-10-22 22:30:06 浏览: 48
解析python实现Lasso回归
在Python中,你可以使用sklearn库中的`GridSearchCV`结合`Lasso`回归模型来进行K折交叉验证下的LASSO(Least Absolute Shrinkage and Selection Operator)参数优化。以下是步骤:
1. 首先,导入必要的库:
```python
from sklearn.linear_model import Lasso
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import mean_squared_error
```
2. 准备数据集,将特征和目标变量分开:
```python
X = df_features.values # 特征矩阵
y = df_target.values # 目标变量
```
3. 定义LASSO的参数网格(这里假设你想调整alpha参数,它是正则化强度):
```python
param_grid = {'alpha': np.logspace(-4, 0, 50)}
```
4. 创建LASSO模型并设置交叉验证:
```python
lasso = Lasso()
cv_lasso = GridSearchCV(lasso, param_grid, cv=5, scoring='neg_mean_squared_error', return_train_score=True)
```
`cv=5`表示5折交叉验证。
5. 进行模型训练和参数搜索:
```python
cv_lasso.fit(X, y)
```
`return_train_score=True`会返回训练分数,帮助分析各个参数下模型的表现。
6. 查看最优参数和模型性能:
```python
best_params_ = cv_lasso.best_params_
best_score_ = cv_lasso.best_score_
print(f"Best parameters: {best_params_}")
print(f"Best score (RMSE): {-best_score_:.2f}")
```
7. 使用最优参数训练最终模型:
```python
final_lasso = Lasso(alpha=cv_lasso.best_params_['alpha'])
final_lasso.fit(X, y)
```
阅读全文