pc1.trans <- data %>% group_by(ABtrans) %>% summarise(n=n()) %>% as.data.frame()

时间: 2024-01-01 15:21:04 浏览: 35
这是一段R语言代码,它的作用是将数据按照ABtrans列进行分组,并计算每组中数据的数量,最后将结果转换为数据框格式并赋值给pc1.trans变量。其中“data”是数据集的名称,“ABtrans”是数据集中的一列,表示基因转录本的状态。这段代码的目的是为了对基因转录本的状态进行分组统计,以便后续的数据分析和可视化。
相关问题

Error in pc1.dat_LDM %>% group_by(ABtrans) %>% summarise(n = n()) %>% : could not find function "%>%" Traceback:

这个错误是因为在你的代码中使用了`%>%`这个函数,但是R语言中没有找到这个函数。`%>%`是管道操作符,通常用于将数据流从一个函数传递到另一个函数。它是由`magrittr`包提供的。 要解决这个错误,你需要先安装`magrittr`包,然后加载它。你可以使用以下代码来安装和加载`magrittr`包: ```R install.packages("magrittr") # 安装magrittr包 library(magrittr) # 加载magrittr包 ``` 安装和加载完`magrittr`包后,你就可以使用`%>%`管道操作符了。

PCA_Plot_3=function (data,Annotation,VAR,Color) { # logcountdata row:genes,column: samples pca <- prcomp(data) pca_out<-as.data.frame(pca$x) df_out<- pca_out %>%tibble::rownames_to_column(var=VAR) %>% left_join(., Annotation) #df_out<- merge (pca_out,Annotation,by.x=0,by.y=0) # label_color<- factor(df_out[,group]) ggplot(df_out,aes_string(x="PC1",y="PC2")) +geom_point(aes_string(colour = Color)) } Deseq2_Deseq_function_2=function (Countdata,Coldata) { dds_fil <- DESeq2:: DESeqDataSetFromMatrix(countData =Countdata, colData = Coldata, design = ~Group) dds_fil_Deg<- DESeq2::DESeq(dds_fil) return(dds_fil_Deg) } pheatmap_singscore=function (pathways,data,Annotation) { Gene_select_anno= data[,colnames(data) %in% pathways] %>%t()%>%.[,rownames(Annotation)] # return(Gene_select_anno) # Anno_expression_data=Gene_select_anno[,c("SYMBOL",Group_select)] %>% as.data.frame() %>% distinct() %>% na.omit() # rownames(Anno_expression_data)=Anno_expression_data[,"SYMBOL"] # Annotation=group_anno["Gene_type"] # input= Anno_expression_data[,Group_select] # F2_pheatmap <- pheatmap::pheatmap(input, cellwigermline calling GATKdth = 10, cellheight = 12, scale = "row", # treeheight_row = 5, # show_rownames = T,show_colnames = T, # annotation_col= Annotation, # # annotation_row=Annotation, # annotation_legend=Label_def, # cluster_rows = T, cluster_cols = F,clustering_distance_rows = "euclidean") pheatmap::pheatmap(Gene_select_anno, cellwigermline=5, cellheight = 10,cellwidth = 10, scale = "row", treeheight_row = 5, show_rownames = T,show_colnames = F, annotation_col= Annotation, # annotation_row=Annotation, #annotation_legend=Label_def, cluster_rows = T, cluster_cols = F,clustering_distance_rows = "euclidean") } matrix.please<-function(x) { m<-as.matrix(x[,-1]) rownames(m)<-x[,1] m } 这是r语言的代码,告诉我每一条代码的作用和意义

PCA_Plot_3: 这个函数用来绘制主成分分析(PCA)的散点图。它接受四个参数:data(数据矩阵),Annotation(注释信息),VAR(行名),Color(颜色)。首先,它对数据进行主成分分析(prcomp函数),然后将主成分分析的结果转换为数据帧(pca_out)。接下来,它将行名转换为指定的VAR变量名,并将注释信息与主成分分析结果进行连接(left_join函数)。最后,它使用ggplot库绘制散点图,其中x轴表示PC1,y轴表示PC2,点的颜色由Color参数指定。 Deseq2_Deseq_function_2: 这个函数用于进行差异表达分析。它接受两个参数:Countdata(基因计数数据)和Coldata(样本注释信息)。首先,它使用DESeq2包中的DESeqDataSetFromMatrix函数将Countdata和Coldata转换为差异表达分析所需的数据集对象。然后,它使用DESeq2包中的DESeq函数进行差异表达分析,并返回结果。 pheatmap_singscore: 这个函数用于绘制热图。它接受三个参数:pathways(基因通路信息),data(基因表达数据),Annotation(注释信息)。首先,它从data中选择pathways对应的基因,并根据Annotation的行名对选定的基因进行筛选。然后,它使用pheatmap包中的pheatmap函数绘制热图,其中Gene_select_anno是待绘制的基因数据,Annotation用于注释列,cluster_rows参数表示是否对行进行聚类,clustering_distance_rows参数表示行聚类所使用的距离度量。 matrix.please: 这个函数用于将数据框转换为矩阵。它接受一个参数x(数据框),并将x的第一列作为行名,将x的其余列转换为矩阵。最后,它返回该矩阵。

相关推荐

请逐条解释分析下面这段程序:ops=sdpsettings('solver','cplex'); solvesdp(C,-f,ops); Pc=[double(Pc1),double(Pc2),double(Pc3)]; Pb=double(Pb); Ps_day=double(Ps_day); Pb_day=double(Pb_day); S=double(S); Pch=double(Pch); Pdis=double(Pdis); Cost_total=double(f) Price_Charge=double(Ce); Ce=sdpvar(24,1);%电价 z=binvar(24,1);%购售电状态 u=binvar(24,1);%储能状态 Pb=sdpvar(24,1);%日前购电 Pb_day=sdpvar(24,1);%实时购电 Ps_day=sdpvar(24,1);%实时售电 Pdis=sdpvar(24,1);%储能放电 Pch=sdpvar(24,1);%储能充电 Pc1=sdpvar(24,1);%一类车充电功率 Pc2=sdpvar(24,1);%二类车充电功率 Pc3=sdpvar(24,1);%三类车充电功率 S=sdpvar(24,1);%储荷容量 for t=2:24 S(t)=S(t-1)+0.9*Pch(t)-Pdis(t)/0.9; end %内层 CI=[sum(Pc1)==50*(0.9*24-9.6),sum(Pc2)==20*(0.9*24-9.6),sum(Pc3)==10*(0.9*24-9.6),Pc1>=0,Pc2>=0,Pc3>=0,Pc1<=50*3,Pc2<=20*3,Pc3<=10*3,Pc1(index1)==0,Pc2(index2)==0,Pc3(index3)==0];%电量需求约束 OI=sum(Ce.*(Pc1+Pc2+Pc3)); ops=sdpsettings('solver','gurobi','kkt.dualbounds',0); [K,details] = kkt(CI,OI,Ce,ops);%建立KKT系统,Ce为参量 %外层 CO=[lb<=Ce<=ub,mean(Ce)==0.5,Pb>=0,Ps_day<=Pdis,Pb_day>=0,Pb_day<=1000*z,Ps_day>=0,Ps_day<=1000*(1-z),Pch>=0,Pch<=1000*u,Pdis>=0,Pdis<=1000*(1-u)];%边界约束 CO=[CO,Pc1+Pc2+Pc3+Pch-Pdis==Pb+Pb_day-Ps_day];%能量平衡 CO=[CO,sum(0.9*Pch-Pdis/0.9)==0,S(24)==2500,S>=0,S<=5000];%SOC约束 OO=-(details.b'*details.dual+details.f'*details.dualeq)+sum(price_s.*Ps_day-price_day_ahead.*Pb-price_b.*Pb_day);%目标函数 optimize([K,CI,CO,boundingbox([CI,CO]),details.dual<=1],-OO) Ce=value(Ce);%电价 Pb=value(Pb);%日前购电 Pb_day=value(Pb_day);%实时购电 Ps_day=value(Ps_day);%实时购电 Pdis=value(Pdis);%储能放电 Pch=value( Pch);%储能充电 Pb_day=value(Pb_day);%实时购电 Pb_day=value(Pb_day);%实时购电 Pc1=value(Pc1);%一类车充电功率 Pc2=value(Pc2);%二类车充电功率 Pc3=value(Pc3);%三类车充电功率 S=value(S);%储荷容量 figure(1) plot(Pc1,'-*','linewidth',1.5) grid hold on plot(Pc2,'-*','linewidth',1.5) hold on plot(Pc3,'-*','linewidth',1.5) title('三类电动汽车充电功率') legend('类型1','类型2','类型3') xlabel('时间') ylabel('功率') figure(2) bar(Pdis,0.5,'linewidth',0.01) grid hold on bar(Pch,0.5,'linewidth',0.01) hold on plot(S,'-*','linewidth',1.5) axis([0.5 24

根据所给的“学生成绩”数据。①计算每一门科目两两之间构成的相关系数矩阵;②使用主成分分析分别计算主成分的标准差、方差占比、累积方差贡献度以及主成分的载荷矩阵;③根据载荷矩阵系数判断应该选取几个主成分,构造主成分的表达式(综合指标),并做分析;④找出几个(至少两个)典型学生,并分析这些学生的成绩与主成分系数的关系。test<-read.table("D:/R/R Code/5/Chap7/test_score.csv", sep=",", header=T) (R<-round(cor(test), 3)) # sample correlation matrix test_PCA<-princomp(test, cor=T) # sample PCA summary(test_PCA, loadings=T) test[c(6,7,45,30,49),] # typical students for the first PC test[c(26,33,8),] # typical students for the second PC # sample principal components of the typical students samplePC<-(round(test_PCA$scores,3))[c(6,7,45,30,49,26,33,8),] rownames(samplePC)<-c(6,7,45,30,49,26,33,8) samplePC # another way to obtain the sample principal components samplePC2<-round(predict(test_PCA),3) [c(6,7,45,30,49,26,33,8),] rownames(samplePC2)<-c(6,7,45,30,49,26,33,8) samplePC2 screeplot (test_PCA, type="lines") # scree graph ### Canonical correlation health<-read.table("D:/R/R Code/5/Chap7/health.csv",sep=",", header=T) (R<-round(cor(health),3)) R11=R[1:3,1:3] R12=R[1:3,4:6] R21=R[4:6,1:3] R22=R[4:6,4:6] A<-solve(R11)%*%R12%*%solve(R22)%*%R21 # matrix for the first group Y1,Y2,Y3 ev<-eigen(A)$values # common eigenvalues of both groups round(sqrt(ev),3) # the canonical correlations health.std=scale(health) # standardize the original data ca=cancor(health.std[,1:3],health.std[,4:6]) # canonical correlation analysis via R ca$cor # canonical correlations ca$xcoef # the loadings (coefficients) of the first group ca$ycoef # the loadings (coefficients) of the second group

请逐条解释分析下面这段程序:%三层博弈,电网-充电站-用户 %电网-充电站,合作博弈,Pareto均衡 %充电站-用户,主从博弈,KKT条件 clear clc %%%%主从博弈%%% PL=[1733.66666666000;1857.50000000000;2105.16666657000;2352.83333343000;2476.66666657000;2724.33333343000;2848.16666657000;2972;3219.66666657000;3467.33333343000;3591.16666657000;3715.00000000000;3467.33333343000;3219.66666657000;2972;2600.50000000000;2476.66666657000;2724.33333343000;2972;3467.33333343000;3219.66666657000;2724.33333343000;2229;1981.33333343000]; a=0.55*PL/mean(PL); b=0.55/mean(PL)*ones(24,1); %b=zeros(24,1); lb=0.2; ub=1; T_1=[1;1;1;1;1;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;1;1];%%%早出晚归型 T_2=[1;1;1;1;1;1;1;1;0;0;0;0;1;1;1;0;0;0;0;1;1;1;1;1];%%%上班族 T_3=[0;0;0;0;0;0;0;1;1;1;1;1;1;1;1;1;1;1;1;1;0;0;0;0];%%%夜班型 Ce=sdpvar(24,1);%电价 Pb=sdpvar(24,1);%购电 Pc1=sdpvar(24,1);%一类车充电功率 Pc2=sdpvar(24,1);%二类车充电功率 Pc3=sdpvar(24,1);%三类车充电功率 C=[lb<=Ce<=ub,mean(Ce)==0.7,Pb>=0];%边界约束 C=[C,Pc1+Pc2+Pc3==Pb];%能量平衡 L_u=sdpvar(1,3);%电量需求等式约束的拉格朗日函数 L_lb=sdpvar(24,3);%充电功率下限约束的拉格朗日函数 L_ub=sdpvar(24,3);%充电功率上限约束的拉格朗日函数 L_T=sdpvar(24,3);%充电可用时间约束的拉格朗日函数 f=200*L_u(1)*(0.9*42-9.6)+150*L_u(2)*(0.9*42-9.6)+50*L_u(3)*(0.9*42-9.6)+sum(sum(L_ub).*[32*30,32*30,16*30])-sum(a.*Pb+b.*Pb.^2);%目标函数 C=[C,Ce-L_u(1)*ones(24,1)-L_lb(:,1)-L_ub(:,1)-L_T(:,1)==0,Ce-L_u(2)*ones(24,1)-L_lb(:,2)-L_ub(:,2)-L_T(:,2)==0,Ce-L_u(3)*ones(24,1)-L_lb(:,3)-L_ub(:,3)-L_T(:,3)==0];%KKT条件 C=[C,sum(Pc1)==200*(0.9*42-9.6),sum(Pc2)==150*(0.9*42-9.6),sum(Pc3)==50*(0.9*42-9.6)];%电量需求约束 for t=1:24 if T_1(t)==0 C=[C,Pc1(t)==0]; else C=[C,L_T(t,1)==0]; end if T_2(t)==0 C=[C,Pc2(t)==0]; else C=[C,L_T(t,2)==0]; end if T_3(t)==0 C=[C,Pc3(t)==0]; else C=[C,L_T(t,3)==0]; end end b_lb=binvar(24,3);%充电功率下限约束的松弛变量 b_ub=binvar(24,3);%充电功率上限约束的松弛变量 M=1000000; for t=1:24 if T_1(t)==0 C=[C,L_ub(t,1)==0,b_ub(t,1)==1,b_lb(t,1)==1]; else C=[C,L_lb(t,1)>=0,L_lb(t,1)<=M*b_lb(t,1),Pc1(t)>=0,Pc1(t)<=M*(1-b_lb(t,1)),Pc1(t)<=32*30,32*30-Pc1(t)<=M*b_ub(t,1

请逐条解释分析下面这段程序:%三层博弈,电网-充电站-用户 %电网-充电站,合作博弈,Pareto均衡 %充电站-用户,主从博弈,KKT条件 clear clc %%%%主从博弈%%% PL=[1733.66666666000;1857.50000000000;2105.16666657000;2352.83333343000;2476.66666657000;2724.33333343000;2848.16666657000;2972;3219.66666657000;3467.33333343000;3591.16666657000;3715.00000000000;3467.33333343000;3219.66666657000;2972;2600.50000000000;2476.66666657000;2724.33333343000;2972;3467.33333343000;3219.66666657000;2724.33333343000;2229;1981.33333343000]; a=0.55*PL/mean(PL); b=0.55/mean(PL)*ones(24,1); %b=zeros(24,1); lb=0.2; ub=1; T_1=[1;1;1;1;1;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;1;1];%%%早出晚归型 T_2=[1;1;1;1;1;1;1;1;0;0;0;0;1;1;1;0;0;0;0;1;1;1;1;1];%%%上班族 T_3=[0;0;0;0;0;0;0;1;1;1;1;1;1;1;1;1;1;1;1;1;0;0;0;0];%%%夜班型 Ce=sdpvar(24,1);%电价 Pb=sdpvar(24,1);%购电 Pc1=sdpvar(24,1);%一类车充电功率 Pc2=sdpvar(24,1);%二类车充电功率 Pc3=sdpvar(24,1);%三类车充电功率 C=[lb<=Ce<=ub,mean(Ce)==0.7,Pb>=0];%边界约束 C=[C,Pc1+Pc2+Pc3==Pb];%能量平衡 L_u=sdpvar(1,3);%电量需求等式约束的拉格朗日函数 L_lb=sdpvar(24,3);%充电功率下限约束的拉格朗日函数 L_ub=sdpvar(24,3);%充电功率上限约束的拉格朗日函数 L_T=sdpvar(24,3);%充电可用时间约束的拉格朗日函数 f=200*L_u(1)*(0.9*42-9.6)+150*L_u(2)*(0.9*42-9.6)+50*L_u(3)*(0.9*42-9.6)+sum(sum(L_ub).*[32*30,32*30,16*30])-sum(a.*Pb+b.*Pb.^2);%目标函数 C=[C,Ce-L_u(1)*ones(24,1)-L_lb(:,1)-L_ub(:,1)-L_T(:,1)==0,Ce-L_u(2)*ones(24,1)-L_lb(:,2)-L_ub(:,2)-L_T(:,2)==0,Ce-L_u(3)*ones(24,1)-L_lb(:,3)-L_ub(:,3)-L_T(:,3)==0];%KKT条件 C=[C,sum(Pc1)==200*(0.9*42-9.6),sum(Pc2)==150*(0.9*42-9.6),sum(Pc3)==50*(0.9*42-9.6)];%电量需求约束 for t=1:24 if T_1(t)==0 C=[C,Pc1(t)==0]; else C=[C,L_T(t,1)==0]; end if T_2(t)==0 C=[C,Pc2(t)==0]; else C=[C,L_T(t,2)==0]; end if T_3(t)==0 C=[C,Pc3(t)==0]; else C=[C,L_T(t,3)==0]; end end for t=1:24 if T_1(t)==0 C=[C,L_ub(t,1)==0]; else C=[C,L_lb(t,1)>=0,Pc1(t)>=0,Pc1(t)*L_lb(t,1)==0,Pc1(t)<=32*30,L_ub(t,1)<=0,L_ub(t,1)*(Pc1(t)-32*30)==0]; end if T_2(t)==0 C=[C,L_ub(t,2)==0]; else C=[C,L_lb(t,2)>=0,Pc2(t)>=0,Pc2(t)*L_lb

最新推荐

recommend-type

华中科技大学电信专业 课程资料 作业 代码 实验报告-数据结构-内含源码和说明书.zip

华中科技大学电信专业 课程资料 作业 代码 实验报告-数据结构-内含源码和说明书.zip
recommend-type

java 游戏飞翔的小鸟

java 制作游戏 飞翔的小鸟
recommend-type

setuptools-25.3.0.zip

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这