boosting随机森林五分类读取excel数据代码实现
时间: 2023-08-15 07:06:03 浏览: 129
最终代码整理.zip
下面是使用Boosting随机森林进行五分类并读取Excel数据的示例代码:
```python
import pandas as pd
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import accuracy_score
# 读取Excel数据
data = pd.read_excel('C:/Users/86178/Desktop/test/test/output.xlsx')
# 提取特征列和目标列
feature_columns = ["X1", "X2", "X3", "X4", "X5"]
target_column = "Vulnerability grade"
X = data[feature_columns]
y = data[target_column]
# 标签编码
label_encoder = LabelEncoder()
y_encoded = label_encoder.fit_transform(y)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=0.2, random_state=42)
# 使用Boosting随机森林进行五分类
model = GradientBoostingClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
# 在测试集上进行预测
y_pred = model.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
```
在这个示例代码中,我们首先读取了Excel数据,提取了特征列和目标列。然后使用LabelEncoder对目标列进行标签编码,将其转换为整数形式。接下来,我们将数据划分为训练集和测试集,并使用Boosting随机森林进行五分类训练。最后,在测试集上进行预测并计算准确率。
阅读全文