人工神经网络和BP神经网络
时间: 2023-12-19 12:31:19 浏览: 103
人工神经网络(Artificial Neural Network,ANN)是一种模拟人脑神经元之间信息传递、处理机制的数学模型。它由大量的人工神经元(Artificial Neuron)相互联接构成,每个神经元都有一定数量的输入和一个输出。输入是其他神经元的输出,输出则被其他神经元作为输入。ANN可以用于分类、回归、聚类等任务。
BP神经网络(Back Propagation Neural Network)是一种常见的人工神经网络,也是一种有监督学习算法。BP神经网络由输入层、隐藏层和输出层构成,其中隐藏层可以有多层。BP神经网络的训练过程是通过反向传播算法来实现的,即先将输入数据送入网络,然后将输出结果与真实结果进行比较,计算误差,再将误差从输出层向输入层反向传播,根据误差调整每个神经元之间的权重,使误差最小化。
阅读全文