def selection(population, fitness): fitness_norm = fitness / fitness.sum() idx = np.random.choice(np.arange(POP_SIZE), size=POP_SIZE, replace=True, p=fitness_norm) return population[idx]详细解释这段代码
时间: 2024-04-19 22:27:21 浏览: 163
这段代码是一个选择操作的函数,用于根据个体的适应度值来选择新的种群。下面是对代码逐步解释:
1. `fitness_norm = fitness / fitness.sum()`:这一行代码计算了适应度值的归一化概率。通过将适应度值除以所有适应度值的总和,可以得到每个个体被选择的概率。这样做是为了确保选择操作是按照适应度进行的。
2. `idx = np.random.choice(np.arange(POP_SIZE), size=POP_SIZE, replace=True, p=fitness_norm)`:这个语句使用 `np.random.choice` 函数从种群中选择新的个体。参数 `np.arange(POP_SIZE)` 创建了一个包含从 0 到 `POP_SIZE-1` 的数组,表示种群中所有个体的索引。`size=POP_SIZE` 表示将从种群中选择与原始种群大小相同数量的个体。`replace=True` 表示选中的个体可以重复,即在选择过程中可以多次选取相同的个体。`p=fitness_norm` 表示根据归一化概率 `fitness_norm` 进行选择。
3. `return population[idx]`:这个语句返回选中的个体作为新的种群。
综上所述,该函数根据个体的适应度值和归一化概率,通过随机选择操作产生了一个新的种群。选中的个体将作为下一代的种群进行进化。
相关问题
def create_laplacian_dict(self): # 拉普拉斯字典 def symmetric_norm_lap(adj): # rowsum = np.array(adj.sum(axis=1)) d_inv_sqrt = np.power(rowsum, -0.5).flatten() d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0 d_mat_inv_sqrt = sp.diags(d_inv_sqrt) norm_adj = d_mat_inv_sqrt.dot(adj).dot(d_mat_inv_sqrt) return norm_adj.tocoo() def random_walk_norm_lap(adj): # 传入邻接矩阵 rowsum = np.array(adj.sum(axis=1)) # 行总和 d_inv = np.power(rowsum, -1.0).flatten() d_inv[np.isinf(d_inv)] = 0 d_mat_inv = sp.diags(d_inv) norm_adj = d_mat_inv.dot(adj) return norm_adj.tocoo() # 归一化的邻接稀疏矩阵 if self.laplacian_type == 'symmetric': # 解释器默认的是random—walk norm_lap_func = symmetric_norm_lap elif self.laplacian_type == 'random-walk': norm_lap_func = random_walk_norm_lap # 拉普拉斯的功能就用这个 else: raise NotImplementedError self.laplacian_dict = {} for r, adj in self.adjacency_dict.items(): self.laplacian_dict[r] = norm_lap_func(adj) A_in = sum(self.laplacian_dict.values()) self.A_in = self.convert_coo2tensor(A_in.tocoo())
可以看出这段代码是用来创建拉普拉斯字典的。其中使用了两种不同的归一化方法,分别是对称归一化和随机游走归一化。如果选择对称归一化,就使用函数symmetric_norm_lap,如果选择随机游走归一化,就使用函数random_walk_norm_lap。然后遍历邻接矩阵字典,对每一个邻接矩阵都进行相应的归一化操作,最后将所有的归一化邻接矩阵相加,得到A_in,并将其转换为张量格式。
import os import numpy as np import matplotlib.pyplot as plt from PIL import Image from sklearn.cluster import SpectralClustering from sklearn.decomposition import PCA from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.resnet50 import ResNet50 from tensorflow.keras.applications.resnet50 import preprocess_input # 定义加载图片函数 def load_image(img_path): img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) return x # 加载ResNet50模型 model = ResNet50(weights='imagenet', include_top=False, pooling='avg') # 加载图片并提取特征向量 img_dir = 'D:/wjd' img_names = os.listdir(img_dir) X = [] for img_name in img_names: img_path = os.path.join(img_dir, img_name) img = load_image(img_path) features = model.predict(img)[0] X.append(features) # 将特征向量转化为矩阵 X = np.array(X) # 计算相似度矩阵 S = np.dot(X, X.T) # 归一化相似度矩阵 D = np.diag(np.sum(S, axis=1)) L = D - S L_norm = np.dot(np.dot(np.sqrt(np.linalg.inv(D)), L), np.sqrt(np.linalg.inv(D))) # 计算特征向量 eigvals, eigvecs = np.linalg.eig(L_norm) idx = eigvals.argsort()[::-1] eigvals = eigvals[idx] eigvecs = eigvecs[:, idx] Y = eigvecs[:, :2] # 使用谱聚类进行分类 n_clusters = 5 clustering = SpectralClustering(n_clusters=n_clusters, assign_labels="discretize", random_state=0).fit(Y) # 可视化聚类结果 pca = PCA(n_components=2) X_pca = pca.fit_transform(X) plt.scatter(X_pca[:, 0], X_pca[:, 1], c=clustering.labels_, cmap='rainbow') plt.show(),存在这个错误是由于数据中存在复数,而该算法不支持处理复数数据造成的,如何解决
这个错误可能是由于特征向量矩阵中存在复数,而谱聚类算法不支持处理复数数据导致的。你可以尝试使用其他谱聚类算法,如基于KMeans的谱聚类算法,或者对特征向量矩阵进行实部取值操作来避免这个问题。具体方法可以参考以下步骤:
1. 实部取值:将特征向量矩阵中的复数部分去掉,只保留实数部分。
2. 使用基于KMeans的谱聚类算法:使用sklearn.cluster中的KMeans类进行谱聚类,将特征向量矩阵作为输入数据进行聚类。
你可以先尝试实部取值操作,如果还存在问题,再考虑使用基于KMeans的谱聚类算法。
阅读全文