int roll=-57.3f*atan(ax/sqrtf(ay*ay+az*az)); //横滚角 int pitch= 57.3f*atan(ay/sqrtf(ax*ax+az*az));//俯仰角 以上面俩个为模板给我计算出偏航角

时间: 2024-08-15 08:09:03 浏览: 111
在这段代码中,`atan` 函数用于计算反正切(arc tangent),通常用于将角度从弧度转换为直角坐标系中的角度。`roll` 和 `pitch` 分别代表飞行器的横滚和俯仰角,它们是基于给定的轴 (`ax`, `ay`, `az`) 计算的。 为了计算偏航角 (yaw),我们同样可以使用 `atan`,它是绕 z 轴旋转的角度。偏航角通常表示相对于正北方向的左侧或右侧旋转。假设我们有一个类似的公式: ```cpp int yaw = 57.3f * atan(ax / sqrtf((ay * ay) + (az * az))); ``` 这里,`sqrtf` 是平方根函数,用于对 `(ay * ay) + (az * az)` 进行开方,结果再除以 `ax` 得到角度值。然而,要注意的是,如果 `ax` 为零,将会导致除以零错误。在实际应用中,需要处理这种情况。
相关问题

请解释一下代码:u8 mpu_dmp_get_data(float *pitch,float *roll,float *yaw) { float q0=1.0f,q1=0.0f,q2=0.0f,q3=0.0f; unsigned long sensor_timestamp; short gyro[3], accel[3], sensors; unsigned char more; long quat[4]; if(dmp_read_fifo(gyro, accel, quat, &sensor_timestamp, &sensors,&more))return 1; if(sensors&INV_WXYZ_QUAT) { q0 = quat[0] / q30; //q30¸ñʽת»»Îª¸¡µãÊý q1 = quat[1] / q30; q2 = quat[2] / q30; q3 = quat[3] / q30; //¼ÆËãµÃµ½¸©Ñö½Ç/ºá¹ö½Ç/º½Ïò½Ç *pitch = asin(-2 * q1 * q3 + 2 * q0* q2)* 57.3; // pitch *roll = atan2(2 * q2 * q3 + 2 * q0 * q1, -2 * q1 * q1 - 2 * q2* q2 + 1)* 57.3; // roll *yaw = atan2(2*(q1*q2 + q0*q3),q0*q0+q1*q1-q2*q2-q3*q3) * 57.3; //yaw }else return 2; return 0; }

这段代码是用于获取MPU6050六轴传感器中的姿态数据,即俯仰角(pitch)、横滚角(roll)和偏航角(yaw)。具体实现是通过调用MPU6050中的DMP(数字运动处理器)获取传感器数据,并进行计算得到姿态数据。其中,q0、q1、q2、q3是四元数表示法中的四个元素,gyro、accel是陀螺仪和加速度计传感器数据,quat是四元数表示法中的四元数组,sensor_timestamp表示传感器数据的时间戳,sensors表示传感器类型,more表示DMP缓存是否还有剩余数据。如果成功获取到数据,则根据四元数计算出姿态数据,并返回0;如果获取数据失败,则返回1;如果传感器类型错误,则返回2。

void Kinematic_Analysis(float velocity,float angle) //T*Tand/2/L为左右轮差值 { Servo=SERVO_INIT+angle*K; //舵机转向 angle* if(Servo > 1880) { Servo = 1880; angle = (double)(Servo - SERVO_INIT)/K; } else if(Servo < 1320) { Servo = 1320; angle = (double)(Servo - SERVO_INIT)/K; } Tand = tan(angle/57.3);;//(int)tan(angle); if(velocity>Targetmotor_correct(Voltage)) { velocity=Targetmotor_correct(Voltage); }else if(velocity<-Targetmotor_correct(Voltage)) { velocity=-Targetmotor_correct(Voltage); } Target_Left=-velocity*(1-T*Tand/2/L); Target_Right=velocity*(1+T*Tand/2/L); //后轮差速 //修正期望速度大于能达到的最大值时无法转弯的问题 Target_Left = filter_left(Target_Left); //平均滑动滤波处理车体的停止跟行走 Target_Right = filter_right(Target_Right); Target_Left=fmax(Target_Left*1.0,-Targetmotor_correct(Voltage)*1.0); Target_Right=fmax(Target_Right*1.0,-Targetmotor_correct(Voltage)*1.0); Target_Left=fmin(Target_Left*1.0,Targetmotor_correct(Voltage)*1.0); Target_Right=fmin(Target_Right*1.0,Targetmotor_correct(Voltage)*1.0); //向左 if(angle > 0) { Target_Left = -Target_Right+2*(T*Tand/2/L)*velocity; } //向右 else if(angle < 0) { Target_Right = -Target_Left+2*(T*Tand/2/L)*velocity; } Servo=SERVO_INIT+angle*K; //舵机转向 } 优化它

要优化这段代码,可以考虑以下几个方面: 1. 减少复计算:在代码中有一些复的计算,比如计算机转向的角度和限舵机转向的范围,可以这些计算提前计算好存储起来,避免重复计。 2. 减少类型转换:代码中有一些类型转换的,比如将整数换为浮点数运算,可以尽量避免这些类型转换直接使用相同类型进行运算。 3. 简化条件判断:代码中有一些条件判断语句,可以尝试简化这些判断逻辑,减少不必要的条件支。 4. 提取公共计算:代码中有一些公共的计算,比如计算Target_Left和Target_Right的值,在不同的条件下有重复的计算逻辑,可以将这些公共计算提取出来,减少重复代码。 5. 使用更高效的数学函数:代码中使用了tan、fmax和fmin等数学函数,可以考虑使用更高效的函数或者近似方法来替代,以提高运行效率。 综合考虑以上优化方法,并根据具体需求和硬件平台特性进行适当调整,可以改进该函数的性能和可读性。
阅读全文

相关推荐

close all clear clc disp('***** 基于EKF的位置速度观测组合导航程序 *****'); disp('Step1:加载数据;'); load IMU_data200.mat %惯导原始数据 load Reference_data.mat %GPS测量数据 disp('Step2:初始化参数;'); %% 一些导航参数常数项 WIE = 7.292115e-5; % 地球自转角速度 r0 = 6378137.0; % 地球半径 EE = 0.0818191908426; % 偏心率 d2r = pi/180; % degree to radian r2d = 180/pi; % radian to degree dh2rs = d2r/3600; % deg/h to rad/s %% 导航坐标系下初始化姿态,速度,位置 yaw = (0)*pi/180;%航向角 pitch = 0*pi/180;%俯仰角 roll = 0*pi/180;%滚动角 cbn=eul2dcm(roll,pitch,yaw); cnb=cbn'; q=dcm2quat(cbn)'; Vn=0;%北向速度 Ve=0;%东向速度 Vd=0;%地向速度 V_last=[Vn Ve Vd]'; Lati = 31.4913627505302*pi/180;%纬度 Longi= 120.849577188492*pi/180;%经度 Alti = 6.6356;%高度 sampt0=1/200;%惯导系统更新时间 Rn = r0*(1-EE^2)/(1-EE^2*(sin(Lati))^2)^1.5; %子午圈曲率半径 Re = r0/(1-EE^2*(sin(Lati))^2)^0.5; %卯酉圈曲率半径 g_u = -9.7803267711905*(1+0.00193185138639*sin(Lati)^2)... /((1-0.00669437999013*sin(Lati)^2)^0.5 *(1.0 + Alti/r0)^2); g = [0 0 -g_u]';%重力 g0=9.80665; %% 卡尔曼滤波P、Q、R设置 % P的设置 std_roll = (5)*d2r; std_pitch = (5)*d2r; std_yaw = (60)*d2r; std_vel = 0.1; std_pos = 5; std_gyro = 3*0.5*dh2rs; % 陀螺随机漂移0.5度/小时 std_acc = 3*0.15e-3*g0; % 加表零偏0.15mg Pfilter = diag([std_roll^2 std_pitch^2 std_yaw^2 std_vel^2 std_vel^2 std_vel^2 (std_pos/3600/30/57.3)^2 (std_pos/3600/30/57.3)^2 std_pos^2 std_gyro^2 std_gyro^2 std_gyro^2 std_acc^2 std_acc^2 std_acc^2]); % Q的设置 std_Wg = 0.15*(2.909*1e-4); % 陀螺漂移噪声,度/根号小时转化成rad/根号秒 std_Wa = 0.21/60/3; % 加表漂移噪声 Qkf = diag([std_Wg^2 std_Wg^2 std_Wg^2 std_Wa^2 std_Wa^2 std_Wa^2]); G = zeros(15, 6); F = zeros(15); F_i=zeros(9,9); F_s=zeros(9,6); H = zeros(6,15); H(1:3,4:6) = eye(3); H(4:6,7:9) = eye(3); % R的设置 R = diag([std_vel^2 std_vel^2 std_vel^2 (std_pos/3600/30/57.3)^2 (std_pos/3600/30/57.3)^2 (std_pos)^2]);

最新推荐

recommend-type

洛阳理工学院在陕西2020-2024各专业最低录取分数及位次表.pdf

那些年,与你同分同位次的同学都去了哪里?全国各大学在陕西2020-2024年各专业最低录取分数及录取位次数据,高考志愿必备参考数据
recommend-type

高频电子线路课程 第4章 正弦波振荡器 共46页.pptx

高频电子线路课程 第4章 正弦波振荡器 共46页.pptx
recommend-type

掌握压缩文件管理:2工作.zip文件使用指南

资源摘要信息:"该文件标题和描述均未提供具体信息,仅显示为'2工作.zip'。文件的标签部分为空。从提供的文件名称列表中,可见只有一个文件名为'2工作'。由于缺乏具体的文件内容描述,无法准确判断'2工作.zip'文件中所包含的内容。然而,从文件名称可以做出一些合理的猜测。 该文件可能是一个包含有关工作、任务或项目管理的资料的压缩包。它可能包含各种文档、表格、图片、演示文稿或其他工作相关的资源。在IT行业中,这样的文件可能用于协作项目、团队工作、远程工作或是个人工作档案的管理。 具体来说,'2工作.zip'可能包含以下类型的知识点: 1. 文档管理:如何组织和存储工作相关文档,包括使用命名规范、文件版本控制以及确保文档的可访问性和备份。 2. 项目协作:项目管理的最佳实践,例如如何通过任务分配、进度跟踪、会议纪要和团队沟通来协作完成项目目标。 3. 时间管理:利用工具和策略来有效地规划和分配工作时间,以及如何设置优先级和处理日常工作。 4. 技能提升:提升个人和团队的专业技能,包括学习新技术、进行培训、分享知识等。 5. 工作流程自动化:使用软件工具和脚本实现工作流程的自动化,减少重复性劳动,提高工作效率。 由于缺少详细描述和标签信息,无法提供更精准的知识点内容。如果需要进一步分析文件内容,需要获取实际的文件或更详细的描述信息。" 根据给定的文件信息,以上是基于文件名“2工作.zip”所能推测出的知识点。由于文件中实际上并没有提供任何具体内容,所以无法给出更具体的描述和细节。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【Hadoop故障排除】:Gzip压缩常见问题与高效解决方案

![hadoop算法之gzip](https://tutorials.freshersnow.com/wp-content/uploads/2020/06/Key-Value-Pairs-In-MapReduce.png) # 1. Hadoop与Gzip压缩概述 ## 1.1 Hadoop与Gzip压缩的简介 Hadoop是一个开源的、可扩展的、分布式存储与计算框架,由Apache软件基金会开发和维护。它被设计用来处理大规模数据,提供了高吞吐量的数据访问能力,非常适合在廉价的硬件上运行大规模数据集。Hadoop的核心是HDFS(Hadoop Distributed File System
recommend-type

新建一个java类TestArray,定义一个数组b={1,2,3,4},利用两种for循环格式(提示:第二种格式for(int n:b))打印数组元素,并计算数组元素之和,打印输出。

当然,这里是一个`TestArray`类的例子,它定义了一个整数数组`b`,并使用了两种for循环打印数组元素以及计算元素之和: ```java public class TestArray { public static void main(String[] args) { // 定义数组 int[] b = {1, 2, 3, 4}; // 使用传统的for循环打印数组元素 System.out.println("使用标准for循环打印数组元素:"); for (int i = 0; i < b.l
recommend-type

易语言动态版置入代码技术解析

资源摘要信息:"易语言是一种简单易学的编程语言,尤其适合中文用户。易语言置入代码动态版,是指将代码以动态的方式置入到程序中,可以在运行时根据需要加载和执行代码。这种方式的好处是可以灵活地扩展程序功能,而不需要重新编译整个程序。易语言模块源码,是指以易语言编写的程序模块,可以被其他易语言程序调用。" 易语言是一种面向对象的可视化编程语言,它以中文作为编程语言的标识,大大降低了编程的门槛,使得非专业程序员也能够通过简单的学习来编写程序。易语言的核心是基于Windows API的二次封装,它提供了一套丰富的中文命令和函数库,使得编程者可以像使用中文一样进行编程。 易语言置入代码动态版涉及到了动态代码执行技术,这是一种在软件运行时才加载和执行代码的技术。这种技术允许程序在运行过程中,动态地添加、修改或者删除功能模块,而无需中断程序运行或进行完整的程序更新。动态代码执行在某些场景下非常有用,例如,需要根据不同用户的需求提供定制化服务时,或者需要在程序运行过程中动态加载插件来扩展功能时。 动态置入代码的一个典型应用场景是在网络应用中。通过动态加载代码,可以为网络应用提供更加灵活的功能扩展和更新机制,从而减少更新程序时所需的时间和工作量。此外,这种方式也可以增强软件的安全性,因为不是所有的功能模块都会从一开始就加载,所以对潜在的安全威胁有一定的防御作用。 易语言模块源码是易语言编写的可复用的代码段,它们通常包含了特定功能的实现。这些模块可以被其他易语言程序通过简单的引用调用,从而实现代码的重用,减少重复劳动,提高开发效率。易语言模块可以是DLL动态链接库,也可以是其他形式的代码封装,模块化的编程使得软件的维护和升级变得更加容易。 在实际应用中,易语言模块源码可以包括各种功能,如网络通信、数据处理、图形界面设计、数据库管理等。通过合理使用这些模块,开发者可以快速构建出复杂的应用程序。例如,如果开发者需要实现一个具有数据库操作功能的程序,他可以直接使用易语言提供的数据库管理模块,而不必从零开始编写数据库操作的代码。 易语言模块源码的使用,不仅仅是对代码的复用,还包括了对易语言编程环境的充分利用。开发者可以通过调用各种模块,利用易语言提供的强大的图形化开发工具和组件,来创建更加丰富的用户界面和更加强大的应用程序。同时,易语言模块源码的共享机制也促进了开发者之间的交流和合作,使得易语言社区更加活跃,共享资源更加丰富。 需要注意的是,虽然动态置入代码和模块化编程为软件开发带来了便利,但同时也需要考虑到代码的安全性和稳定性。动态加载和执行代码可能会带来潜在的安全风险,例如代码注入攻击等。因此,在设计和实现动态置入代码时,必须采取适当的防护措施,确保代码的安全性。 总结来说,易语言置入代码动态版和易语言模块源码的设计,既展示了易语言在简化编程方面的优势,也体现了其在应对复杂软件开发需求时的灵活性和高效性。通过这种方式,易语言不仅让编程变得更加容易,也让软件开发和维护变得更加高效和安全。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【Hadoop存储革命】:Gzip压缩对存储空间影响的深度分析

![【Hadoop存储革命】:Gzip压缩对存储空间影响的深度分析](https://media.geeksforgeeks.org/wp-content/uploads/20200618125555/3164-1.png) # 1. Hadoop生态系统与数据存储 ## 1.1 Hadoop的崛起与数据存储的重要性 随着大数据时代的到来,Hadoop生态系统在数据处理领域占据了重要的地位。Hadoop作为一个开源框架,实现了可扩展地存储和处理大量数据的能力。其中,数据存储是Hadoop最基础也是最关键的功能之一,它保证了大数据的可靠性和高效访问。 ## 1.2 Hadoop的数据存储组件
recommend-type

请使用上述的接口实现与机器人的tcp同行

要使用TCP协议与机器人进行通信,首先你需要创建一个网络服务端,监听特定的端口并处理来自机器人的连接请求。以下是一个简单的C#示例,展示了如何使用`System.Net.Sockets`库创建一个TCP服务器: ```csharp using System; using System.Net; using System.Net.Sockets; class TcpRobotServer { private TcpListener _listener; private int _port = 12345; // 设置你想监听的端口号 public void Star