YOLOv8识别流程
时间: 2024-05-18 16:08:37 浏览: 178
基于 Python通过YOLOv8在摄像上对人脸面都进行情绪识别,并显示出来
YOLOv8是一种目标检测算法,它可以实现实时的物体识别。下面是YOLOv8的识别流程:
1. 输入图像:首先,将待检测的图像输入到YOLOv8模型中。
2. 基础网络:YOLOv8使用Darknet作为基础网络,它是一个卷积神经网络结构。Darknet可以提取图像的特征信息。
3. 特征提取:在Darknet网络中,通过多个卷积层和池化层对图像进行特征提取。这些层可以捕捉图像中的边缘、纹理等特征。
4. 特征融合:YOLOv8采用了特征金字塔结构,将不同尺度的特征图进行融合。这样可以同时检测不同大小的目标。
5. 检测层:在特征融合后,YOLOv8通过卷积层和全连接层来预测目标的类别和位置。每个目标会被表示为一个边界框(bounding box),并且会估计该目标属于每个类别的概率。
6. 非极大值抑制:为了去除重叠的边界框,YOLOv8使用非极大值抑制(NMS)算法。NMS会根据边界框的置信度和重叠度来选择最佳的边界框。
7. 输出结果:最后,YOLOv8会输出检测到的目标的类别、位置和置信度。
阅读全文