pytorch 实现联邦学习fedavg
时间: 2023-10-13 17:03:28 浏览: 142
毕业设计基于Pytorch分布式包的单机多核CPU实现横向联邦学习项目源码.zip
5星 · 资源好评率100%
联邦学习(FedAvg)是一种分布式机器学习方法,使用多个参与方的本地数据进行模型训练,并在各参与方之间共享更新的模型参数以实现全局模型的训练。以下是一个用PyTorch实现联邦学习(FedAvg)的简单示例:
1.导入所需的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
```
2.定义本地参与方的数据集和模型:
```python
class LocalDataset(data.Dataset):
def __init__(self, data):
self.data = data
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return len(self.data)
class LocalModel(nn.Module):
def __init__(self):
super(LocalModel, self).__init__()
self.fc = nn.Linear(10, 1)
def forward(self, x):
return self.fc(x)
```
3.定义联邦学习(FedAvg)的训练函数:
```python
def train_federated(data_loader, model, optimizer):
criterion = nn.MSELoss()
model.train()
running_loss = 0.0
for inputs in data_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, inputs) # 使用本地数据进行训练
loss.backward()
optimizer.step()
running_loss += loss.item()
return model.state_dict(), running_loss / len(data_loader)
```
4.初始化参与方的数据和模型,并进行联邦学习(FedAvg)的迭代训练:
```python
def federated_avg(data, num_epochs, lr):
models = []
for i in range(len(data)):
model = LocalModel()
models.append(model)
for epoch in range(num_epochs):
model_states = []
avg_loss = 0.0
for i, model in enumerate(models):
optimizer = optim.SGD(model.parameters(), lr=lr)
data_loader = torch.utils.data.DataLoader(LocalDataset(data[i]), batch_size=32, shuffle=True)
model_state, loss = train_federated(data_loader, model, optimizer)
model_states.append(model_state)
avg_loss += loss
avg_loss /= len(models)
# 更新模型参数
for model_state in model_states:
for param_name, param in model_state.items():
param.data.add_(param)
```
这是一个简单的使用PyTorch实现的联邦学习(FedAvg)示例。在实际应用中,还需要考虑模型参数传输的安全性和通信效率等问题。
阅读全文