FedAvg pytorch
时间: 2023-10-16 10:07:04 浏览: 91
pytorch
FedAvg pytorch是一个用于联邦学习的算法。它通过对参与者的本地模型进行加权平均来实现全局模型的更新。这个算法的实现非常简单,它首先对每个参与者的模型参数进行平均,然后将平均参数作为全局模型的更新。具体代码如下所示:
def FedAvg(w):
w_avg = copy.deepcopy(w += w[i][k
w_avg[k = torch.true_divide(w_avg[k], len(w))
return w_avg
其中,w是一个包含参与者模型参数的列表。算法遍历每个参数的键值对,将所有参与者的对应参数加和,并将结果除以参与者的数量,得到平均参数作为全局模型的更新。这样,通过不同参与者的贡献,全局模型可以得到更新并获得更好的性能。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [联邦学习算法FedAvg实现(PyTorch)](https://blog.csdn.net/Joker_1024/article/details/116377064)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *2* [联邦元学习算法Per-FedAvg的PyTorch实现](https://blog.csdn.net/Cyril_KI/article/details/123389721)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *3* [PyTorch 实现联邦学习FedAvg (详解)](https://blog.csdn.net/qq_36018871/article/details/121361027)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
[ .reference_list ]
阅读全文