result_train_file = os.path.join('output', args.dataset, 'train')
时间: 2024-01-08 12:04:38 浏览: 101
这段代码是在使用 Python 中的 os 模块来创建一个文件路径。`os.path.join()` 函数用于将多个字符串连接成一个路径,并根据操作系统的不同使用适当的分隔符。
在这个例子中,它将字符串 `'output'`、`args.dataset` 和字符串 `'train'` 进行连接,并返回一个表示文件路径的字符串。
假设 `args.dataset` 的值为 `'example'`,那么 `result_train_file` 的值将是 `'output/example/train'`。这个文件路径可以用于保存训练结果或其他相关的输出文件。
相关问题
def __init__(self, args): self.args = args self.filename_list = self.load_file_name_list(os.path.join(args.dataset_path, 'train_path_list.txt')) self.cut_size = args.test_cut_size self.cut_stride = args.test_cut_stride
这段代码定义了一个类的初始化方法,它有两个参数:args 和 self。其中,self 表示类的实例本身,args 是一个命名空间,其中存储了类的各种参数和设置。
在初始化方法中,首先将 args 存储为类的一个属性,然后通过 load_file_name_list() 方法加载文件名列表。这个方法会读取一个名为 train_path_list.txt 的文件,并将其中的路径列表存储到 filename_list 属性中。最后,将测试切片大小(cut_size)和测试切片步长(cut_stride)存储为类的属性。
需要注意的是,这段代码属于一个类的定义,它并不会被直接执行。如果要使用这个类,需要先实例化它,然后才能调用其中的方法和属性。
if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--path', type=str, default=r"data/UCI HAR Dataset/UCI HAR Dataset", help='UCI dataset data path') parser.add_argument('--save', type=str, default='data/UCI_Smartphone_Raw.csv', help='save file name') args = parser.parse_args() data_path = args.path # read train subjects train_subjects = pd.read_csv(os.path.join(data_path, 'train/subject_train.txt'), header=None, names=['subject']) # read test subjects test_subjects = pd.read_csv(os.path.join(data_path, 'test/subject_test.txt'), header=None, names=['subject']) # concat subjects = pd.concat([train_subjects, test_subjects], axis=0) # read train labels train_labels = pd.read_csv(os.path.join(data_path, 'train/y_train.txt'), header=None, names=['label']) # read train labels test_labels = pd.read_csv(os.path.join(data_path, 'test/y_test.txt'), header=None, names=['label']) # labels labels = pd.concat([train_labels, test_labels], axis=0) final_dataframe = pd.concat([subjects, labels], axis=1) data = [] for name in COLUMNS: final_dataframe = pd.concat([final_dataframe, read_txt(name)], axis=1) final_dataframe.to_csv(args.save,index=False) 如何将文中txt文件改成mnist数据集数据,其他不做大修改
要将代码修改为使用MNIST数据集而不是txt文件,你需要进行以下修改:
1. 导入所需的库和模块:
```python
import numpy as np
import pandas as pd
from sklearn.datasets import fetch_openml
```
2. 加载MNIST数据集:
```python
mnist = fetch_openml('mnist_784', version=1, cache=True)
```
3. 将图像矩阵和标签分别存储为numpy数组:
```python
X = mnist.data
y = mnist.target
```
4. 创建一个包含所有数据的Pandas数据框:
```python
df = pd.DataFrame(X)
df['label'] = y
```
5. 将数据框保存为CSV文件:
```python
df.to_csv(args.save, index=False)
```
注意,这里我们使用了`args.save`作为保存文件名,这是根据你之前的代码中的`--save`命令行参数来决定的。
除了以上修改,你还需要删除以下代码块,因为MNIST数据集已经包含了图像数据和标签,不需要再读取其他文件:
```python
# read train subjects
train_subjects = pd.read_csv(os.path.join(data_path, 'train/subject_train.txt'), header=None, names=['subject'])
# read test subjects
test_subjects = pd.read_csv(os.path.join(data_path, 'test/subject_test.txt'), header=None, names=['subject'])
# concat
subjects = pd.concat([train_subjects, test_subjects], axis=0)
# read train labels
train_labels = pd.read_csv(os.path.join(data_path, 'train/y_train.txt'), header=None, names=['label'])
# read train labels
test_labels = pd.read_csv(os.path.join(data_path, 'test/y_test.txt'), header=None, names=['label'])
# labels
labels = pd.concat([train_labels, test_labels], axis=0)
final_dataframe = pd.concat([subjects, labels], axis=1)
data = []
for name in COLUMNS:
final_dataframe = pd.concat([final_dataframe, read_txt(name)], axis=1)
```
这些修改后的代码将直接将MNIST数据集转换为CSV文件,并保存到指定的路径中。
阅读全文