ID3算法的自然语言伪代码
时间: 2024-09-24 18:00:24 浏览: 35
ID3 (Iterative Dichotomiser 3) 算法是一种基于信息增益的决策树生成算法。以下是它的基本自然语言伪代码描述:
```
function ID3(dataSet, attributes):
if dataSet is empty or all elements have the same class:
return a leaf node with the most common class in dataSet
if no more attributes left to choose from:
return a leaf node representing the majority class of dataSet
best_attribute = select_best_attribute(dataSet, attributes)
sub_trees = {}
for attribute_value in best_attribute.values:
subset = filter_data(dataSet, attribute_value)
sub_trees[attribute_value] = ID3(subset, remove_attribute(attributes, best_attribute))
return a decision node with best_attribute and sub_trees
function select_best_attribute(dataSet, attributes):
max_info_gain = -1
best_attribute = None
for attribute in attributes:
info_gain = calculate_info_gain(dataSet, attribute)
if info_gain > max_info_gain:
max_info_gain = info_gain
best_attribute = attribute
return best_attribute
function calculate_info_gain(dataSet, attribute):
entropy_before = calculate_entropy(dataSet)
subsets = split_data_set_by_attribute(dataSet, attribute)
entropy_after = sum([calculate_entropy(subset) / len(subsets) for subset in subsets])
return entropy_before - entropy_after
function calculate_entropy(dataSet):
# 计算数据集中各类别的概率乘以其对应的熵
probabilities = count_classes(dataSet)
entropy = sum([-p * log2(p) for p in probabilities])
return entropy
```
在这个伪代码中,`dataSet` 是训练数据集,`attributes` 是当前可供选择的属性列表。算法首先检查是否达到终止条件,然后找到信息增益最高的属性作为节点划分依据,递归地创建子树。`select_best_attribute` 和 `calculate_info_gain` 负责信息增益的计算,`calculate_entropy` 则负责计算熵。
阅读全文