自适应卡尔曼滤波代码
时间: 2023-08-22 19:15:03 浏览: 169
根据提供的引用内容,以下是一个自适应卡尔曼滤波的代码示例:
```python
# 初始化参数
n_x = size(X,1)
R_x = 2.5e-5
P_x = diag(1e-10)
Q_x = \[1.0000e-10 0 0; 0 1.0000e-10 0; 0 0 1.0000e-10\]
# 初始化输出向量
SOC_Estimated = \[\]
Vt_Estimated = \[\]
Vt_Error = \[\]
# 根据当前向量的大小设置for循环的长度
ik = length(Current)
# 卡尔曼滤波算法
for i in range(ik):
# 预测步骤
X_predicted = F*X
P_predicted = F*P*F' + Q
# 校正步骤
K = P_predicted*H'/(H*P_predicted*H' + R)
X_corrected = X_predicted + K*(Z - H*X_predicted)
P_corrected = (eye(n_x) - K*H)*P_predicted
# 更新参数
X = X_corrected
P = P_corrected
# 存储估计值
SOC_Estimated.append(X\[1\])
Vt_Estimated.append(X\[2\])
Vt_Error.append(Z - H*X_predicted)
```
请注意,这只是一个示例代码,具体的实现可能会根据具体的应用场景和需求而有所不同。在实际使用时,您可能需要根据您的数据和系统模型进行适当的调整和优化。
#### 引用[.reference_title]
- *1* *2* [基于自适应扩展卡尔曼滤波器(AEKF)的锂离子电池SOC估计(附MATLAB代码)](https://blog.csdn.net/m0_60354177/article/details/127890424)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item]
- *3* [【笔记】自适应卡尔曼滤波 Adaptive Extended Kalman Filter](https://blog.csdn.net/zhoupian/article/details/125749340)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文