python数据清洗项目实战
时间: 2024-04-24 11:19:38 浏览: 274
Clean_Data_python.pdf
Python数据清洗项目实战是指使用Python编程语言进行数据清洗的实际项目。数据清洗是指对原始数据进行处理和转换,以便于后续分析和建模。下面是一个简单的Python数据清洗项目实战的介绍:
项目名称:电商销售数据清洗
项目描述:该项目的目标是对电商销售数据进行清洗,以便于后续的分析和可视化展示。原始数据包含了订单信息、产品信息、客户信息等多个表格,需要进行数据清洗和整合。
项目步骤:
1. 数据导入:使用Python的pandas库读取原始数据文件,将数据加载到DataFrame中进行后续处理。
2. 数据预览:查看数据的前几行、列名、数据类型等信息,了解数据的结构和内容。
3. 缺失值处理:检查数据中是否存在缺失值,根据业务需求选择合适的方法进行处理,如删除缺失值、填充缺失值等。
4. 重复值处理:检查数据中是否存在重复值,根据业务需求选择合适的方法进行处理,如删除重复值、保留唯一值等。
5. 数据类型转换:根据需要将数据中的某些列转换为合适的数据类型,如日期时间类型、数值类型等。
6. 数据整合:根据业务需求将多个表格进行合并,使用合适的连接方式(如内连接、外连接等)将相关数据整合到一张表中。
7. 数据清洗:根据业务需求进行数据清洗,如去除异常值、修正错误数据等。
8. 数据导出:将清洗后的数据导出为新的文件,以便于后续的分析和可视化展示。
阅读全文