c语言火车调度站的入口处有n节硬席或软席,试编写算法,输出对这n节车厢进行调度的操作,式所有的软席车厢都被调整到硬席车厢之前

时间: 2024-10-25 12:06:12 浏览: 16
在C语言中,我们可以使用循环结构和条件判断来解决这个问题。下面是一个简单的算法描述: 1. 首先,假设我们有一个数组`train_cars[]`表示所有车厢,其中0代表硬席车厢,非零值代表软席车厢。另外,设置一个变量`num_soft_seats`记录当前软席车厢的数量。 2. 使用一个`for`循环,从第一个元素开始遍历整个数组,直到所有车厢都检查过: ```c for (int i = 0; i < n; ++i) { if (train_cars[i] > 0) { // 判断是否为软席车厢 num_soft_seats--; // 减少软席车厢数量 if (num_soft_seats == 0) { // 如果所有软席车厢已调整完毕 printf("将软席车厢 %d 调至硬席前\n", i); train_cars[i] = 0; // 将软席车厢调整为硬席 } else { printf("调整软席车厢 %d 至硬席前...\n", i); // 提示正在进行调整 } } else { printf("车厢 %d 已经是硬席\n", i); } } ``` 3. 当遍历结束后,所有的软席车厢都应该已经被调整到了硬席车厢之前,因为当`num_soft_seats`为0时,会立即处理并将其设为硬席。
相关问题

c语言使用栈火车调度站的入口处有n节硬席或软席,试编写算法,输出对这n节车厢进行调度的操作,式所有的软席车厢都被调整到硬席车厢之前

在C语言中,我们可以采用迭代或递归的方式来解决这个问题,这里提供一种基于循环的简单算法思路: ```c #include <stdio.h> void adjust_cars(int n, int *tickets) { // 假设tickets数组里0表示硬席,1表示软席 for (int i = 0; i < n; i++) { // 遍历所有车厢 if (tickets[i] == 1) { // 如果是软席车厢 int j; for (j = i - 1; j >= 0 && tickets[j] == 0; j--) { // 从前往后找硬席车厢 // 将软席车厢与前一个硬席车厢交换位置 tickets[j + 1] = tickets[j]; tickets[j] = 0; } // 如果找到硬席车厢并进行了交换,则继续找下一个未处理的软席车厢 if (j != i - 1) { i = j; } else { // 如果找不到硬席车厢,则直接将软席放在最后 tickets[i] = 0; } } } } // 测试函数 void print_tickets(int n, int *tickets) { for (int i = 0; i < n; i++) { printf("%d ", tickets[i]); } printf("\n"); } int main() { int n; scanf("%d", &n); int tickets[n]; // 初始化所有车厢为硬席(0) // 输入软席车厢信息 for (int i = 0; i < n; i++) { scanf("%d", &tickets[i]); } adjust_cars(n, tickets); printf("调度后的车厢顺序:"); print_tickets(n, tickets); return 0; } ``` 这个算法的主要思想是在硬席车厢前面尽可能地寻找空位安置软席车厢。注意,如果所有硬席车厢都在软席车厢之前,那么软席车厢会被移动到最后。

假设铁道进行车厢调度,火车调度站的入口处有n节硬席和软席车厢(分别用H和S来表示)等待调度。试编写算法,输出这n节车厢的进行调度的序列,使所有的软席车厢都被调度到硬席车厢的前面。用C语言实现

为了实现这个需求,我们可以使用经典的“贪心算法”思想。首先将所有软席车厢(S)放在队列的前面,然后依次将硬席车厢(H)加入。这里是一个简单的C语言实现: ```c #include <stdio.h> #include <stdlib.h> typedef struct { char type; // 'H' for hard席, 'S' for soft席 } Carriage; void schedule(Carriage* carriages, int n) { // 创建一个优先级队列(最小堆) struct Queue { Carriage* data; int size; } queue = {NULL, 0}; // 将所有软席车厢放到队列头部 for (int i = 0; i < n; i++) { if (carriages[i].type == 'S') { Carriage* temp = malloc(sizeof(Carriage)); *temp = carriages[i]; queue.data = realloc(queue.data, (queue.size + 1) * sizeof(Carriage)); queue.data[queue.size] = *temp; queue.size++; } } // 硬席车厢入队,保持软席在前 for (int i = 0; i < n; i++) { if (carriages[i].type == 'H') { Carriage* temp = malloc(sizeof(Carriage)); *temp = carriages[i]; queue.data = realloc(queue.data, (queue.size + 1) * sizeof(Carriage)); queue.data[queue.size] = *temp; queue.size++; // 调整堆结构,保证软席在硬席前面 for (int j = queue.size - 1; j > 0 && queue.data[j].type == 'S'; j--) { swap(&queue.data[j], &queue.data[j - 1]); sift_up(j, queue); } } } // 输出调度顺序 for (int i = 0; i < queue.size; i++) { printf("%s", queue.data[i].type); // 可能需要根据实际输出格式调整 } printf("\n"); // 清理内存 for (int i = 0; i < queue.size; i++) { free(queue.data[i]); } free(queue.data); } // 内部辅助函数,用于维护最小堆特性 void sift_up(int index, struct Queue queue) { while (index > 0 && queue.data[index / 2].type == 'S') { swap(&queue.data[index], &queue.data[index / 2]); index /= 2; } } void swap(Carriage** a, Carriage** b) { Carriage temp = *a; *a = *b; *b = temp; } // 主函数示例 int main() { Carriage carriages[] = {'S', 'H', 'S', 'H', 'H'}; int n = sizeof(carriages) / sizeof(carriages[0]); schedule(carriages, n); return 0; } ``` 这个程序首先创建一个包含软席车厢的最小堆,然后将硬席车厢插入堆中,同时保持软席在前。`schedule` 函数负责整个调度过程,而 `main` 函数只是一个示例场景。
阅读全文

相关推荐

最新推荐

recommend-type

ListView上下翻页效果.zip

ListView上下翻页效果
recommend-type

Android项目之——漂亮的平台书架.zip

Android项目之——漂亮的平台书架
recommend-type

TestBrightness2.zip

TestBrightness2
recommend-type

00_Método_toBands.ipynb

gee python 教程(西班牙语)
recommend-type

(源码)基于Linux和GTK的系统监控与图形化显示.zip

# 基于Linux和GTK的系统监控与图形化显示 ## 项目简介 本项目旨在通过分析Linux系统中的proc目录,提取并展示系统的关键信息,包括系统概况、进程信息和内存使用情况。通过使用GTK库,项目提供了一个图形化的用户界面,使用户能够直观地查看和监控系统的实时状态。 ## 项目的主要特性和功能 1. 系统信息展示 显示内核版本、系统启动时间等基本信息。 提供系统的主机名、CPU详细参数等信息。 2. 进程信息展示 显示所有进程的摘要信息,包括PID、CPU和内存使用率。 支持根据CPU使用率、内存使用率等参数对进程进行排序。 3. 内存信息展示 展示系统的内存使用情况,包括总内存、可用内存等详细参数。 4. 动态刷新 系统信息、进程信息和内存信息能够实时动态刷新,确保用户获取最新的系统状态。 5. 图形化界面 使用GTK库创建直观的图形界面,方便用户查看和操作。
recommend-type

Java集合ArrayList实现字符串管理及效果展示

资源摘要信息:"Java集合框架中的ArrayList是一个可以动态增长和减少的数组实现。它继承了AbstractList类,并且实现了List接口。ArrayList内部使用数组来存储添加到集合中的元素,且允许其中存储重复的元素,也可以包含null元素。由于ArrayList实现了List接口,它支持一系列的列表操作,包括添加、删除、获取和设置特定位置的元素,以及迭代器遍历等。 当使用ArrayList存储元素时,它的容量会自动增加以适应需要,因此无需在创建ArrayList实例时指定其大小。当ArrayList中的元素数量超过当前容量时,其内部数组会重新分配更大的空间以容纳更多的元素。这个过程是自动完成的,但它可能导致在列表变大时会有性能上的损失,因为需要创建一个新的更大的数组,并将所有旧元素复制到新数组中。 在Java代码中,使用ArrayList通常需要导入java.util.ArrayList包。例如: ```java import java.util.ArrayList; public class Main { public static void main(String[] args) { ArrayList<String> list = new ArrayList<String>(); list.add("Hello"); list.add("World"); // 运行效果图将显示包含"Hello"和"World"的列表 } } ``` 上述代码创建了一个名为list的ArrayList实例,并向其中添加了两个字符串元素。在运行效果图中,可以直观地看到这个列表的内容。ArrayList提供了多种方法来操作集合中的元素,比如get(int index)用于获取指定位置的元素,set(int index, E element)用于更新指定位置的元素,remove(int index)或remove(Object o)用于删除元素,size()用于获取集合中元素的个数等。 为了演示如何使用ArrayList进行字符串的存储和管理,以下是更加详细的代码示例,以及一个简单的运行效果图展示: ```java import java.util.ArrayList; import java.util.Iterator; public class Main { public static void main(String[] args) { // 创建一个存储字符串的ArrayList ArrayList<String> list = new ArrayList<String>(); // 向ArrayList中添加字符串元素 list.add("Apple"); list.add("Banana"); list.add("Cherry"); list.add("Date"); // 使用增强for循环遍历ArrayList System.out.println("遍历ArrayList:"); for (String fruit : list) { System.out.println(fruit); } // 使用迭代器进行遍历 System.out.println("使用迭代器遍历:"); Iterator<String> iterator = list.iterator(); while (iterator.hasNext()) { String fruit = iterator.next(); System.out.println(fruit); } // 更新***List中的元素 list.set(1, "Blueberry"); // 移除ArrayList中的元素 list.remove(2); // 再次遍历ArrayList以展示更改效果 System.out.println("修改后的ArrayList:"); for (String fruit : list) { System.out.println(fruit); } // 获取ArrayList的大小 System.out.println("ArrayList的大小为: " + list.size()); } } ``` 在运行上述代码后,控制台会输出以下效果图: ``` 遍历ArrayList: Apple Banana Cherry Date 使用迭代器遍历: Apple Banana Cherry Date 修改后的ArrayList: Apple Blueberry Date ArrayList的大小为: 3 ``` 此代码段首先创建并初始化了一个包含几个水果名称的ArrayList,然后展示了如何遍历这个列表,更新和移除元素,最终再次遍历列表以展示所做的更改,并输出列表的当前大小。在这个过程中,可以看到ArrayList是如何灵活地管理字符串集合的。 此外,ArrayList的实现是基于数组的,因此它允许快速的随机访问,但对元素的插入和删除操作通常需要移动后续元素以保持数组的连续性,所以这些操作的性能开销会相对较大。如果频繁进行插入或删除操作,可以考虑使用LinkedList,它基于链表实现,更适合于这类操作。 在开发中使用ArrayList时,应当注意避免过度使用,特别是当知道集合中的元素数量将非常大时,因为这样可能会导致较高的内存消耗。针对特定的业务场景,选择合适的集合类是非常重要的,以确保程序性能和资源的最优化利用。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MATLAB信号处理优化】:算法实现与问题解决的实战指南

![【MATLAB信号处理优化】:算法实现与问题解决的实战指南](https://i0.hdslb.com/bfs/archive/e393ed87b10f9ae78435997437e40b0bf0326e7a.png@960w_540h_1c.webp) # 1. MATLAB信号处理基础 MATLAB,作为工程计算和算法开发中广泛使用的高级数学软件,为信号处理提供了强大的工具箱。本章将介绍MATLAB信号处理的基础知识,包括信号的类型、特性以及MATLAB处理信号的基本方法和步骤。 ## 1.1 信号的种类与特性 信号是信息的物理表示,可以是时间、空间或者其它形式的函数。信号可以被分
recommend-type

在西门子S120驱动系统中,更换SMI20编码器时应如何确保数据的正确备份和配置?

在西门子S120驱动系统中更换SMI20编码器是一个需要谨慎操作的过程,以确保数据的正确备份和配置。这里是一些详细步骤: 参考资源链接:[西门子Drive_CLIQ编码器SMI20数据在线读写步骤](https://wenku.csdn.net/doc/39x7cis876?spm=1055.2569.3001.10343) 1. 在进行任何操作之前,首先确保已经备份了当前工作的SMI20编码器的数据。这通常需要使用STARTER软件,并连接CU320控制器和电脑。 2. 从拓扑结构中移除旧编码器,下载当前拓扑结构,然后删除旧的SMI
recommend-type

实现2D3D相机拾取射线的关键技术

资源摘要信息: "camera-picking-ray:为2D/3D相机创建拾取射线" 本文介绍了一个名为"camera-picking-ray"的工具,该工具用于在2D和3D环境中,通过相机视角进行鼠标交互时创建拾取射线。拾取射线是指从相机(或视点)出发,通过鼠标点击位置指向场景中某一点的虚拟光线。这种技术广泛应用于游戏开发中,允许用户通过鼠标操作来选择、激活或互动场景中的对象。为了实现拾取射线,需要相机的投影矩阵(projection matrix)和视图矩阵(view matrix),这两个矩阵结合后可以逆变换得到拾取射线的起点和方向。 ### 知识点详解 1. **拾取射线(Picking Ray)**: - 拾取射线是3D图形学中的一个概念,它是从相机出发穿过视口(viewport)上某个特定点(通常是鼠标点击位置)的射线。 - 在游戏和虚拟现实应用中,拾取射线用于检测用户选择的对象、触发事件、进行命中测试(hit testing)等。 2. **投影矩阵(Projection Matrix)与视图矩阵(View Matrix)**: - 投影矩阵负责将3D场景中的点映射到2D视口上,通常包括透视投影(perspective projection)和平面投影(orthographic projection)。 - 视图矩阵定义了相机在场景中的位置和方向,它将物体从世界坐标系变换到相机坐标系。 - 将投影矩阵和视图矩阵结合起来得到的invProjView矩阵用于从视口坐标转换到相机空间坐标。 3. **实现拾取射线的过程**: - 首先需要计算相机的invProjView矩阵,这是投影矩阵和视图矩阵的逆矩阵。 - 使用鼠标点击位置的视口坐标作为输入,通过invProjView矩阵逆变换,计算出射线在世界坐标系中的起点(origin)和方向(direction)。 - 射线的起点一般为相机位置或相机前方某个位置,方向则是从相机位置指向鼠标点击位置的方向向量。 - 通过编程语言(如JavaScript)的矩阵库(例如gl-mat4)来执行这些矩阵运算。 4. **命中测试(Hit Testing)**: - 使用拾取射线进行命中测试是一种检测射线与场景中物体相交的技术。 - 在3D游戏开发中,通过计算射线与物体表面的交点来确定用户是否选中了一个物体。 - 此过程中可能需要考虑射线与不同物体类型的交互,例如球体、平面、多边形网格等。 5. **JavaScript与矩阵操作库**: - JavaScript是一种广泛用于网页开发的编程语言,在WebGL项目中用于处理图形渲染逻辑。 - gl-mat4是一个矩阵操作库,它提供了创建和操作4x4矩阵的函数,这些矩阵用于WebGL场景中的各种变换。 - 通过gl-mat4库,开发者可以更容易地执行矩阵运算,而无需手动编写复杂的数学公式。 6. **模块化编程**: - camera-picking-ray看起来是一个独立的模块或库,它封装了拾取射线生成的算法,让开发者能够通过简单的函数调用来实现复杂的3D拾取逻辑。 - 模块化编程允许开发者将拾取射线功能集成到更大的项目中,同时保持代码的清晰和可维护性。 7. **文件名称列表**: - 提供的文件名称列表是"camera-picking-ray-master",表明这是一个包含多个文件和子目录的模块或项目,通常在GitHub等源代码托管平台上使用master分支来标识主分支。 - 开发者可以通过检查此项目源代码来更深入地理解拾取射线的实现细节,并根据需要进行修改或扩展功能。 ### 结论 "camera-picking-ray"作为一个技术工具,为开发者提供了一种高效生成和使用拾取射线的方法。它通过组合和逆变换相机矩阵,允许对3D场景中的物体进行精准选择和交互。此技术在游戏开发、虚拟现实、计算机辅助设计(CAD)等领域具有重要应用价值。通过了解和应用拾取射线,开发者可以显著提升用户的交互体验和操作精度。