module 'sklearn.metrics' has no attribute 'mean_absolute_percentage_error'
时间: 2024-06-21 12:02:52 浏览: 237
在sklearn.metrics模块中,确实没有名为'mean_absolute_percentage_error'的属性。可能是因为该属性在较新版本的sklearn中才被引入,或者在其他库中被定义。如果您想使用均方根百分比误差指标,可以尝试使用sklearn中的'mean_squared_error'和'absolute_percentage_error'两个函数来手动计算该指标。具体实现方式如下:
```
from sklearn.metrics import mean_squared_error
def mean_absolute_percentage_error(y_true, y_pred):
return np.mean(np.abs((y_true - y_pred) / y_true)) * 100
def rmse(y_true, y_pred):
return np.sqrt(mean_squared_error(y_true, y_pred))
def mape(y_true, y_pred):
return mean_absolute_percentage_error(y_true, y_pred)
```
相关问题:
1. sklearn.metrics中有哪些常用指标?
2. 如何评估回归模型的性能?
3. 如何评估分类模型的性能?
相关问题
AttributeError: module 'sklearn.metrics' has no attribute 'mean_absolute_percentage_error'
AttributeError: module 'sklearn.metrics' has no attribute 'mean_absolute_percentage_error' 是一个错误提示,意味着在sklearn.metrics模块中没有名为'mean_absolute_percentage_error'的属性。
在Scikit-learn中,没有内置的'mean_absolute_percentage_error'函数。然而,你可以使用其他方法来计算平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)。以下是一种常见的计算MAPE的方法:
```python
import numpy as np
def mean_absolute_percentage_error(y_true, y_pred):
y_true, y_pred = np.array(y_true), np.array(y_pred)
return np.mean(np.abs((y_true - y_pred) / y_true)) * 100
```
你可以将上述代码添加到你的项目中,并使用`mean_absolute_percentage_error`函数来计算MAPE。
from sklearn.metrics import mean_absolute_error
As an AI language model, I cannot import any libraries or modules. However, I can tell you that the `mean_absolute_error` function is part of the scikit-learn library and is used to calculate the mean absolute error between the actual and predicted values of a regression problem. It is often used as a performance metric to evaluate the accuracy of a regression model. The function takes two arguments, the actual values and predicted values, and returns the mean absolute error between them.
阅读全文