Rijndael对称算法

时间: 2023-10-12 10:05:25 浏览: 43
Rijndael是一种对称分组加密算法,它的分组大小和密钥长度可变。该算法基于置换和代替操作来实现加密。 Rijndael算法采用有限域,其中Rijndael256使用的是特定的约多项式,其对应的十六进制数字为‘011B’。 对于Rijndael算法的最大轮数设置,Rijndael256的最大轮数是14。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [NTL加密---Rijndael:对称密码(可逆)(AES)(加密数据)](https://blog.csdn.net/qq_38798147/article/details/127478810)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
相关问题

. Rijndael算法

Rijndael算法是一种高级加密标准(AES)的候选算法,它是由美国国家标准与技术协会(NIST)所选定的。该算法在密码学中被广泛应用于数据加密和解密的过程中。Rijndael算法是一种对称密钥算法,意味着加密和解密使用相同的密钥。它可以用于保护敏感数据的机密性,确保数据在传输和存储过程中不被未经授权的人访问。 Rijndael算法的实现可以使用不同的编程语言,例如C#。下面是一个使用C#实现Rijndael算法的示例: ```csharp using System; using System.Security.Cryptography; using System.Text; public class RijndaelExample { public static void Main() { string plainText = "Hello, World!"; string key = "ThisIsARijndaelKey"; string iv = "ThisIsARijndaelIV"; byte[] encryptedBytes = EncryptString(plainText, key, iv); string encryptedText = Convert.ToBase64String(encryptedBytes); Console.WriteLine("Encrypted Text: " + encryptedText); string decryptedText = DecryptString(encryptedBytes, key, iv); Console.WriteLine("Decrypted Text: " + decryptedText); } public static byte[] EncryptString(string plainText, string key, string iv) { byte[] keyBytes = Encoding.UTF8.GetBytes(key); byte[] ivBytes = Encoding.UTF8.GetBytes(iv); using (RijndaelManaged rijndael = new RijndaelManaged()) { rijndael.Key = keyBytes; rijndael.IV = ivBytes; ICryptoTransform encryptor = rijndael.CreateEncryptor(rijndael.Key, rijndael.IV); using (MemoryStream ms = new MemoryStream()) { using (CryptoStream cs = new CryptoStream(ms, encryptor, CryptoStreamMode.Write)) { using (StreamWriter sw = new StreamWriter(cs)) { sw.Write(plainText); } } return ms.ToArray(); } } } public static string DecryptString(byte[] encryptedBytes, string key, string iv) { byte[] keyBytes = Encoding.UTF8.GetBytes(key); byte[] ivBytes = Encoding.UTF8.GetBytes(iv); using (RijndaelManaged rijndael = new RijndaelManaged()) { rijndael.Key = keyBytes; rijndael.IV = ivBytes; ICryptoTransform decryptor = rijndael.CreateDecryptor(rijndael.Key, rijndael.IV); using (MemoryStream ms = new MemoryStream(encryptedBytes)) { using (CryptoStream cs = new CryptoStream(ms, decryptor, CryptoStreamMode.Read)) { using (StreamReader sr = new StreamReader(cs)) { return sr.ReadToEnd(); } } } } } } ``` 这个示例演示了如何使用C#编写的Rijndael算法进行文本加密和解密。在示例中,我们使用了一个密钥和一个初始化向量(IV)来加密和解密文本。加密后的文本以Base64字符串的形式进行存储和传输。

php rijndael

Rijndael是一种对称密钥加密算法,它是AES(Advanced Encryption Standard)的前身。在PHP中使用Rijndael算法进行加解密可以使用mcrypt扩展。以下是一个简单的例子: ```php $key = 'mykey'; $message = 'hello world'; $iv = mcrypt_create_iv(mcrypt_get_iv_size(MCRYPT_RIJNDAEL_128, MCRYPT_MODE_CBC), MCRYPT_RAND); $encryptedMessage = mcrypt_encrypt(MCRYPT_RIJNDAEL_128, $key, $message, MCRYPT_MODE_CBC, $iv); $decryptedMessage = mcrypt_decrypt(MCRYPT_RIJNDAEL_128, $key, $encryptedMessage, MCRYPT_MODE_CBC, $iv); ``` 在上面的例子中,我们使用了128位的Rijndael算法,并使用CBC模式和随机生成的IV来加密和解密消息。请注意,mcrypt已经在PHP 7.2中被弃用,因此建议使用其他加密扩展或库。

相关推荐

最新推荐

recommend-type

在ARM微处理器上实现Rijndael加密算法--千锋培训

文档介绍了引 言,1 Rijndael加密算法简介,1.1 算法流程结构,2算法所使用的主要变换,2 arm汇编编程实现Rijndael算法的要点,3 Rijndael加密算法实现效率比较,结语
recommend-type

用C#实现的数据加密(一) —— 对称加密算法

用C#实现的数据加密(一... 以下是关于对称加密算法的C#实现代码,大家可以根据需要更改不同的算法,文中以Rijndael算法为例: using System; using System.IO; using System.Security.Cryptography; using System.Text;
recommend-type

AES加密标准算法说明及代码

Rijndael加密算法是分组长度可变的分组密码。分组长度,密钥长度可以为128,192,256比特。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这