选择一个应用场景,自己准备数据集,用代码来深度学习模型进行训练,调整(修改)模型,测试,得到结果;跟至少另外2种以上模型进行对比实验并分析实验分析结果
时间: 2024-11-09 20:30:13 浏览: 6
在一个典型的应用场景中,比如图像分类任务,我们可以选取MNIST手写数字识别数据集作为例子。首先,你需要下载并预处理数据集:
```python
import tensorflow as tf
from tensorflow.keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# 归一化像素值
x_train, x_test = x_train / 255.0, x_test / 255.0
# 将标签转换为独热编码
y_train = tf.keras.utils.to_categorical(y_train)
y_test = tf.keras.utils.to_categorical(y_test)
```
接下来,我们可以选择构建几个不同的深度学习模型,如全连接网络(Dense)、卷积神经网络(Convolutional Neural Network, CNN)以及残差网络(ResNet)。这里我们举个简单的例子:
1. 全连接网络(Dense Model)
```python
model_dense = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
```
2. 卷积神经网络(CNN Model)
```python
model_cnn = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
tf.keras.layers.MaxPooling2D((2, 2)),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
```
对每个模型进行训练、调整超参数(例如增加层数、优化器、学习率等),然后测试它们的表现:
```python
dense_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
cnn_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
dense_history = dense_model.fit(x_train, y_train, epochs=10, validation_split=0.2)
cnn_history = cnn_model.fit(x_train, y_train, epochs=10, validation_split=0.2)
```
最后,通过计算测试集上每个模型的准确率来比较:
```python
dense_loss, dense_accuracy = dense_model.evaluate(x_test, y_test)
cnn_loss, cnn_accuracy = cnn_model.evaluate(x_test, y_test)
print(f"Dense model accuracy: {dense_accuracy}")
print(f"CNN model accuracy: {cnn_accuracy}")
# 对比实验分析
阅读全文