transformer+unet
时间: 2023-11-01 07:58:29 浏览: 106
Transformer U-Net是一种结合了Transformer和U-Net的医学图像分割框架。相比于传统的基于卷积神经网络(CNN)的方法,Transformer在建模全局上下文方面更加强大,并在大规模预训练下展现出优越的可迁移性。然而,单纯使用Transformer对标记化的图像块进行编码并直接上采样到完整分辨率的密集输出会导致缺乏详细的定位信息。为了解决这个问题,TransUNet提出了一个混合架构,同时利用来自CNN特征的高分辨率信息和Transformer的全局上下文信息。具体来说,TransUNet使用Transformer来编码标记化的图像块以提取全局上下文,然后解码器对编码特征进行采样,并将其与高分辨率的CNN特征相结合,以实现更精确的定位。
相关问题
transformer加unet
Transformer加UNet是一种混合结构,用于遥感图像语义分割。传统的Transformer网络在全局建模方面表现出色,但在定位能力方面存在不足。为了解决这个问题,TransUnet和TransFuse提出了将CNN和Transformer结合起来的方法。
TransUnet是将CNN和Transformer按顺序堆叠在一起,形成一个新的编码器结构。这样可以利用CNN的局部特征提取能力和Transformer的全局建模能力,从而提高语义分割的性能。
TransFuse则同时执行CNN和Transformer的功能,并试图融合这两个功能。它在Transformer分支的解码器中使用了简单的渐进式上采样,以恢复空间分辨率。
总的来说,Transformer加UNet的混合结构可以充分利用CNN和Transformer的优势,提高遥感图像语义分割的性能。
Transformer-Unet
Transformer-Unet是一种结合了Transformer和Unet的神经网络架构,用于图像分割任务。它是基于Transformer的自注意力机制和Unet的编码-解码结构进行了改进和融合。
在传统的Unet中,编码器部分通过卷积层逐渐提取图像的特征,并将特征信息传递给解码器部分进行分割。而Transformer-Unet则引入了Transformer的自注意力机制,用于替代Unet中的卷积操作。自注意力机制能够捕捉全局上下文信息,有助于更好地理解图像中的语义信息。
具体来说,Transformer-Unet的编码器部分由多个Transformer编码器堆叠而成,每个编码器包含多头自注意力机制和前馈神经网络。这样可以在不同层次上提取图像的特征,并保留全局上下文信息。
解码器部分则类似于传统的Unet,通过上采样和卷积操作将编码器部分提取到的特征进行逐步恢复和重建,最终得到分割结果。
Transformer-Unet的优点在于能够同时利用Transformer和Unet的优势,既能够捕捉全局上下文信息,又能够保留细节特征。这使得它在图像分割任务中具有较好的性能。
阅读全文