void HMISendstart(void) { delay_ms(200); HMISendb(0xff); delay_ms(200); HMISends("t1all.txt=\"\""); HMISendb(0xff); } void HMIpassword(void) //ÉèÖÃdataΪÃÜÂë { HMISends("va0all.txt="); HMISends("\""); HMISends(TEXT_Buffer); HMISends("\""); HMISendb(0xff); } //ʱ¼äÉèÖú¯Êý HMItimesetup(15,36,59) void HMItimesetup(u8 HIM_h,u8 HIM_m,u8 HIM_s) { char time[2]="\0\0"; time[0]=HIM_h/10+48; time[1]=HIM_h%10+48; HMISends("rtc3="); HMISends(time); HMISendb(0xff); time[0]=HIM_m/10+48; time[1]=HIM_m%10+48; HMISends("rtc4="); HMISends(time); HMISendb(0xff); time[0]=HIM_s/10+48; time[1]=HIM_s%10+48; HMISends("rtc5="); HMISends(time); HMISendb(0xff); } int HMIreturn(void) { //½ÓÊÕÃÜÂëÅжϽá¹û µ½´®¿Ú2 sendto´®¿Ú1 if(USART_RX_STA2&0x8000) { USART_RX_STA2=0; return (USART_RX_BUF2[0]-48); } return 2; }
时间: 2024-04-18 14:33:52 浏览: 119
这段代码定义了几个函数。
HMISendstart函数用于发送一系列指令到HMI,实现初始化的操作。函数中使用了延时函数delay_ms,分别延时200毫秒后调用HMISendb函数发送0xff,再延时200毫秒后调用HMISends函数发送"t1all.txt=\"\""指令,最后再次调用HMISendb函数发送0xff。
HMIpassword函数用于向HMI发送密码设置的指令。函数中使用了HMISends函数依次发送"va0all.txt="、TEXT_Buffer数组内容和0xff。
HMItimesetup函数用于向HMI发送时间设置的指令。函数中首先根据传入的小时、分钟和秒钟参数生成两个字符数组time,然后使用HMISends函数依次发送"rtc3="、time数组内容和0xff,再依次发送"rtc4="、time数组内容和0xff,最后依次发送"rtc5="、time数组内容和0xff。
HMIreturn函数用于判断是否接收到HMI发送的密码结果。如果USART_RX_STA2变量的最高位为1,即接收完成,将USART_RX_BUF2数组的第一个元素减去48后返回,否则返回2。
这些函数的作用是向HMI发送不同的指令以实现初始化、密码设置和时间设置,并且可以接收并判断HMI发送的密码结果。
相关问题
写出下列代码每行的注释: #include<reg51.h> sbit SN_green=P0^3; sbit SN_yellow=P0^4; sbit SN_red=P0^5; sbit EW_green=P0^0; sbit EW_yellow=P0^1; sbit EW_red=P0^2; unsigned char data cnt_sn,cnt_ew; unsigned int data T1_cnt; unsigned char data state_val_sn,state_val_ew; char code led_seg_code[10]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; char code init_sn[3]={24,4,29}; char code init_ew[3]={29,24,4}; void delay(unsigned int t) { while(--t); } void led_show(unsigned int u,unsigned int v) { unsigned char i; i=u%10; P1=led_seg_code[i]; P3=0xef; delay(50); P3=0xff; i=u%100/10; P1=led_seg_code[i]; P3=0xdf; delay(50); P3=0xff; i=v%10; P2=led_seg_code[i]; P3=0xbf; delay(50); P3=0xff; i=v%100/10; P2=led_seg_code[i]; P3=0x7f; delay(50); P3=0xff; } void timer1() interrupt 3 { T1_cnt++; if(T1_cnt>3999) { T1_cnt=0; if(cnt_sn!=0) { cnt_sn--; } else { state_val_sn++; if(state_val_sn>2)state_val_sn=0; cnt_sn=init_sn[state_val_sn]; if(state_val_sn==0) { SN_green=0; SN_yellow=1; SN_red=1; } else if(state_val_sn==1) { SN_green=1; SN_yellow=0; SN_red=1; } else if(state_val_sn==2) { SN_green=1; SN_yellow=1; SN_red=0; } } if(cnt_ew!=0) { cnt_ew--; } else { state_val_ew++; if(state_val_ew>2)state_val_ew=0; cnt_ew=init_ew[state_val_ew]; if(state_val_ew==0) { EW_green=1; EW_yellow=1; EW_red=0; } else if(state_val_ew==1) { EW_green=0; EW_yellow=1; EW_red=1; } else if(state_val_ew==2) { EW_green=1; EW_yellow=0; EW_red=1; } } } } void button1() interrupt 0 { cnt_sn=60; cnt_ew=60; SN_green=1; SN_yellow=1; SN_red=0; EW_green=1; EW_yellow=1; EW_red=0; } main() { cnt_sn=init_sn[0]; cnt_ew=init_ew[0]; T1_cnt=0; state_val_sn=0; state_val_ew=0; SN_green=0; SN_yellow=1; SN_red=1; EW_green=1; EW_yellow=1; EW_red=0; TMOD=0x20; TH1=0x19; TL1=0x19; EA=1; ET1=1;TR1=1; IT1=1;EX1=1; IT0=1;EX0=1; while(1) { delay(10); led_show(cnt_sn,cnt_ew); } }
#include<reg51.h> //包含头文件reg51.h
sbit SN_green=P0^3; //定义P0^3为SN_green
sbit SN_yellow=P0^4; //定义P0^4为SN_yellow
sbit SN_red=P0^5; //定义P0^5为SN_red
sbit EW_green=P0^0; //定义P0^0为EW_green
sbit EW_yellow=P0^1; //定义P0^1为EW_yellow
sbit EW_red=P0^2; //定义P0^2为EW_red
unsigned char data cnt_sn,cnt_ew; //定义cnt_sn和cnt_ew为无符号字符型变量
unsigned int data T1_cnt; //定义T1_cnt为无符号整型变量
unsigned char data state_val_sn,state_val_ew; //定义state_val_sn和state_val_ew为无符号字符型变量
char code led_seg_code[10]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; //定义led_seg_code为字符型数组,初始化为0x3f、0x06、0x5b、0x4f、0x66、0x6d、0x7d、0x07、0x7f、0x6f
char code init_sn[3]={24,4,29}; //定义init_sn为字符型数组,初始化为24、4、29
char code init_ew[3]={29,24,4}; //定义init_ew为字符型数组,初始化为29、24、4
void delay(unsigned int t) //定义延时函数delay,参数为无符号整型变量t
{
while(--t); //循环t次(等待t个机器周期)
}
void led_show(unsigned int u,unsigned int v) //定义led_show函数,参数为无符号整型变量u和无符号整型变量v
{
unsigned char i; //定义i为无符号字符型变量
i=u%10; //i等于u除以10的余数
P1=led_seg_code[i]; //P1输出led_seg_code[i]
P3=0xef; //P3的最低位变为0,其余位不变
delay(50); //延时50个机器周期
P3=0xff; //P3全部位变为1
i=u%100/10; //i等于u除以10的结果的余数
P1=led_seg_code[i]; //P1输出led_seg_code[i]
P3=0xdf; //P3的第二位变为0,其余位不变
delay(50); //延时50个机器周期
P3=0xff; //P3全部位变为1
i=v%10; //i等于v除以10的余数
P2=led_seg_code[i]; //P2输出led_seg_code[i]
P3=0xbf; //P3的第三位变为0,其余位不变
delay(50); //延时50个机器周期
P3=0xff; //P3全部位变为1
i=v%100/10; //i等于v除以10的结果的余数
P2=led_seg_code[i]; //P2输出led_seg_code[i]
P3=0x7f; //P3的最高位变为0,其余位不变
delay(50); //延时50个机器周期
P3=0xff; //P3全部位变为1
}
void timer1() interrupt 3 //定时器1中断服务程序
{
T1_cnt++; //T1_cnt自加
if(T1_cnt>3999) //如果T1_cnt大于3999
{
T1_cnt=0; //T1_cnt清零
if(cnt_sn!=0) //如果cnt_sn不等于0
{
cnt_sn--; //cnt_sn自减
}
else //否则
{
state_val_sn++; //state_val_sn自加
if(state_val_sn>2)state_val_sn=0; //如果state_val_sn大于2,则state_val_sn等于0
cnt_sn=init_sn[state_val_sn]; //cnt_sn等于init_sn[state_val_sn]
if(state_val_sn==0) //如果state_val_sn等于0
{
SN_green=0; //SN_green等于0
SN_yellow=1; //SN_yellow等于1
SN_red=1; //SN_red等于1
}
else if(state_val_sn==1) //如果state_val_sn等于1
{
SN_green=1; //SN_green等于1
SN_yellow=0; //SN_yellow等于0
SN_red=1; //SN_red等于1
}
else if(state_val_sn==2) //如果state_val_sn等于2
{
SN_green=1; //SN_green等于1
SN_yellow=1; //SN_yellow等于1
SN_red=0; //SN_red等于0
}
}
if(cnt_ew!=0) //如果cnt_ew不等于0
{
cnt_ew--; //cnt_ew自减
}
else //否则
{
state_val_ew++; //state_val_ew自加
if(state_val_ew>2)state_val_ew=0; //如果state_val_ew大于2,则state_val_ew等于0
cnt_ew=init_ew[state_val_ew]; //cnt_ew等于init_ew[state_val_ew]
if(state_val_ew==0) //如果state_val_ew等于0
{
EW_green=1; //EW_green等于1
EW_yellow=1; //EW_yellow等于1
EW_red=0; //EW_red等于0
}
else if(state_val_ew==1) //如果state_val_ew等于1
{
EW_green=0; //EW_green等于0
EW_yellow=1; //EW_yellow等于1
EW_red=1; //EW_red等于1
}
else if(state_val_ew==2) //如果state_val_ew等于2
{
EW_green=1; //EW_green等于1
EW_yellow=0; //EW_yellow等于0
EW_red=1; //EW_red等于1
}
}
}
}
void button1() interrupt 0 //外部中断0服务程序
{
cnt_sn=60; //cnt_sn等于60
cnt_ew=60; //cnt_ew等于60
SN_green=1; //SN_green等于1
SN_yellow=1; //SN_yellow等于1
SN_red=0; //SN_red等于0
EW_green=1; //EW_green等于1
EW_yellow=1; //EW_yellow等于1
EW_red=0; //EW_red等于0
}
main() //主函数
{
cnt_sn=init_sn[0]; //cnt_sn等于init_sn[0]
cnt_ew=init_ew[0]; //cnt_ew等于init_ew[0]
T1_cnt=0; //T1_cnt清零
state_val_sn=0; //state_val_sn等于0
state_val_ew=0; //state_val_ew等于0
SN_green=0; //SN_green等于0
SN_yellow=1; //SN_yellow等于1
SN_red=1; //SN_red等于1
EW_green=1; //EW_green等于1
EW_yellow=1; //EW_yellow等于1
EW_red=0; //EW_red等于0
TMOD=0x20; //TMOD等于0x20
TH1=0x19; //TH1等于0x19
TL1=0x19; //TL1等于0x19
EA=1; //打开总中断
ET1=1; //打开定时器1中断
TR1=1; //启动定时器1
IT1=1; //设置外部中断1为下降沿触发
EX1=1; //打开外部中断1
IT0=1; //设置外部中断0为下降沿触发
EX0=1; //打开外部中断0
while(1) //无限循环
{
delay(10); //延时10个机器周期
led_show(cnt_sn,cnt_ew); //调用led_show函数,显示cnt_sn和cnt_ew
}
}
#include "iom48v.h" const unsigned char disp[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xa7,0xa1,0x86,0x8e,0xff,0x7f}; unsigned char ledbuf[]={0xff,0xff,0xff,0xff}; unsigned char k=0; unsigned int x=0; unsigned int v=0; unsigned int i=0; unsigned char a[]={0x0e,0x0d,0x0b,0x07}; void delay(unsigned int x){ while(x--);} void io_init(void){ DDRC=0x0f; PORTC=0x0f; DDRB=0xff; PORTB=0xff; DDRD=0x02;} void t1_init(void){ TCCR1A=0x00; TCCR1B=0x0a; TCNT1=0; OCR1A=625; //ctc模式 ICR1=0xffff;} void uart_init(void){ UCSR0A=0b01000000; //异步,1起始位,八数据位,无校验,一停止 UCSR0B=0b00001000; //发送使能 UCSR0C=0b00000110; UBRR0=12;//baud=4800 } void uart_send(unsigned char d){//数据发送 while(!(UCSR0A&(1<<UDRE0))); //等待数据寄存器为空 UDR0=d; } unsigned char uart_receive(void){//数据接收 while(!(UCSR0A&0x80)); return UDR0;} #pragma interrupt_handler Int_TCCR1A:12 void Int_TCCR1A(void){ k=(k+1)%4; PORTC=0x0f; PORTB=ledbuf[k]; PORTC=a[k];} void decode(unsigned int v){ ledbuf[0]=disp[v/1000];ledbuf[0]&=0x7f; v=v%1000; ledbuf[1]=disp[v/100]; v=v%100; ledbuf[2]=disp[v/10]; ledbuf[3]=disp[v%10];} void main(void){ uart_init(); io_init(); t1_init(); SREG|=0x80; TIMSK1=0x02; while(1){ if((PIND&0x04)==0x04){ uart_send('a');} i=uart_receive(); decode(i); } }为什么这代码无法实现数据发送,接收和数码管显示接受的数据
这段代码中存在多个问题:
1.缺少头文件,例如avr/io.h
2.在main函数中没有开启总中断,需要添加sei()函数
3.在uart_init函数中设置波特率错误,应该设置为UBRR0=25,以获得波特率为19200
4.在uart_receive函数中,应该将UCSR0A的第7位(即RXC0)与0x80进行比较,而不是直接与0x08进行比较
5.在decode函数中,应该将ledbuf[0]的最高位清零,以显示数字"0"
修改后的代码如下:
```
#include <avr/io.h>
const unsigned char disp[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xa7,0xa1,0x86,0x8e,0xff,0x7f};
unsigned char ledbuf[]={0xff,0xff,0xff,0xff};
unsigned char k=0;
unsigned int x=0;
unsigned int v=0;
unsigned int i=0;
unsigned char a[]={0x0e,0x0d,0x0b,0x07};
void delay(unsigned int x){
while(x--);
}
void io_init(void){
DDRC=0x0f;
PORTC=0x0f;
DDRB=0xff;
PORTB=0xff;
DDRD=0x02;
}
void t1_init(void){
TCCR1A=0x00;
TCCR1B=0x0a;
TCNT1=0;
OCR1A=625; //ctc模式
ICR1=0xffff;
}
void uart_init(void){
UCSR0A=0b01000000; //异步,1起始位,八数据位,无校验,一停止
UCSR0B=0b00011000; //发送接收使能
UCSR0C=0b00000110;
UBRR0=25;//baud=19200
}
void uart_send(unsigned char d){//数据发送
while(!(UCSR0A&(1<<UDRE0))); //等待数据寄存器为空
UDR0=d;
}
unsigned char uart_receive(void){//数据接收
while(!(UCSR0A&(1<<RXC0)));
return UDR0;
}
#pragma interrupt_handler Int_TCCR1A:12
void Int_TCCR1A(void){
k=(k+1)%4;
PORTC=0x0f;
PORTB=ledbuf[k];
PORTC=a[k];
}
void decode(unsigned int v){
ledbuf[0]=disp[v/1000];
ledbuf[0]&=0x7f; //最高位清零
v=v%1000;
ledbuf[1]=disp[v/100];
v=v%100;
ledbuf[2]=disp[v/10];
ledbuf[3]=disp[v%10];
}
int main(void){
uart_init();
io_init();
t1_init();
sei(); //开启总中断
TIMSK1=0x02;
while(1){
if((PIND&0x04)==0x04){
uart_send('a');
}
i=uart_receive();
decode(i);
}
}
```
注意:这里只是对代码中存在的问题进行了修改,但并不能保证代码的正确性。在实际应用中,还需要根据具体需求进行修改和优化。
阅读全文