jupyter波士顿房价预测sklearn可视化

时间: 2023-09-02 17:03:19 浏览: 136
Jupyter是一种开源的交互式编程环境,它提供了一种灵活的方式来编写和运行代码,并且支持实时的数据可视化。而波士顿房价预测是一个经典的机器学习问题,通过使用scikit-learn库来实现了该问题的解决方案,并且可以通过可视化方法对结果进行分析和展示。 在Jupyter中,我们可以使用scikit-learn库中的波士顿房价数据集(Boston Housing Dataset),该数据集包含了波士顿地区房屋的各种特征及对应的价格。我们可以首先加载该数据集,并对数据进行探索性分析。 接下来,我们可以使用scikit-learn中的线性回归模型或其他适合波士顿房价预测的模型来构建我们的预测模型。我们可以将数据集分为训练集和测试集,使用训练集来训练模型,并使用测试集来评估模型的性能。 在预测完成之后,我们可以利用可视化工具如matplotlib或seaborn来对预测结果进行可视化。例如,我们可以绘制真实的房价和预测的房价之间的散点图,以检查预测结果与实际结果之间的关系。此外,我们还可以绘制预测误差的分布图,以评估模型的性能和准确度。 通过在Jupyter上进行波士顿房价预测的可视化,我们可以更直观地理解和分析模型的性能及预测结果,进而对模型进行改进和优化。同时,这也为我们提供了一种直观的方式来与他人分享我们的研究和发现。
相关问题

keras波士顿房价预测可视化

下面是使用Keras库进行波士顿房价预测的可视化示例代码,其中包含了实际房价和预测房价之间的散点图和残差图: ```python import numpy as np import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import Dense from sklearn.datasets import load_boston from sklearn.metrics import mean_squared_error, mean_absolute_error from sklearn.model_selection import train_test_split # 加载波士顿房价数据集 boston = load_boston() # 准备数据 X = boston.data y = boston.target # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 定义模型 model = Sequential() model.add(Dense(50, input_dim=X.shape[1], activation='relu')) model.add(Dense(50, activation='relu')) model.add(Dense(1)) # 编译模型 model.compile(loss='mean_squared_error', optimizer='adam') # 训练模型 history = model.fit(X_train, y_train, epochs=100, batch_size=32, validation_data=(X_test, y_test)) # 对测试集进行预测 y_pred = model.predict(X_test) # 绘制实际房价和预测房价之间的散点图 plt.scatter(y_test, y_pred) plt.xlabel('Actual Prices') plt.ylabel('Predicted Prices') plt.title('Actual vs. Predicted Prices') plt.show() # 绘制残差图 residuals = y_test - y_pred.flatten() plt.scatter(y_test, residuals) plt.xlabel('Actual Prices') plt.ylabel('Residuals') plt.title('Residual Plot') plt.show() # 输出模型评估指标 print('MSE:', mean_squared_error(y_test, y_pred)) print('MAE:', mean_absolute_error(y_test, y_pred)) ``` 运行上述代码后,可以得到实际房价和预测房价之间的散点图和残差图,以及模型的评估指标。

Jupyter波士顿房价数据的决策树数据可视化的热力图

以下是Jupyter中使用决策树模型对波士顿房价数据进行预测,并使用热力图进行可视化的示例代码: ```python # 导入所需的库和数据集 import pandas as pd from sklearn.datasets import load_boston from sklearn.tree import DecisionTreeRegressor from sklearn.model_selection import train_test_split import seaborn as sns boston = load_boston() df = pd.DataFrame(boston.data, columns=boston.feature_names) df['MEDV'] = boston.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(df[boston.feature_names], df['MEDV'], test_size=0.2, random_state=42) # 构建决策树模型 tree = DecisionTreeRegressor(max_depth=3) tree.fit(X_train, y_train) # 可视化特征重要性 importances = pd.DataFrame({'feature':boston.feature_names,'importance':tree.feature_importances_}) importances = importances.sort_values('importance',ascending=False) sns.barplot(x='importance',y='feature',data=importances) # 可视化决策树 from sklearn.tree import export_graphviz import pydotplus from IPython.display import Image dot_data = export_graphviz( tree, out_file=None, feature_names=boston.feature_names, class_names=boston.target.astype(str), filled=True, rounded=True, special_characters=True ) graph = pydotplus.graph_from_dot_data(dot_data) Image(graph.create_png()) # 可视化决策树预测结果 import numpy as np import matplotlib.pyplot as plt # 构建测试数据集 data = X_test.iloc[0] data = np.array(data).reshape(1, -1) # 预测结果 pred = tree.predict(data) # 绘制热力图 corr = df.corr() sns.heatmap(corr, cmap='coolwarm', annot=True) plt.show() ``` 通过上述代码,可以得到决策树模型的特征重要性可视化图、决策树可视化图和热力图等可视化结果。其中,热力图可以展示不同特征之间的相关性,从而更好地理解波士顿房价数据的特征分布情况。

相关推荐

最新推荐

recommend-type

数据可视化课程练习题.docx

几百道数据可视化课程的习题, 部分试题: 什么是平稳时间序列? 我的答案: 对于一个时间序列来说,如果它的均值没有系统的变化(无趋势),方差没有系统变化,并且严格消除 了周期性的变化,就称为是平稳的。
recommend-type

使用pytorch实现可视化中间层的结果

今天小编就为大家分享一篇使用pytorch实现可视化中间层的结果,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Python爬取数据并实现可视化代码解析

主要介绍了Python爬取数据并实现可视化代码解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
recommend-type

CODESYS之切换可视化界面.docx

CODESYS之切换人机界面 在一个完整的项目中,通常需要多个人机界面,如主页,配方,报警等,如何实现页面之间的切换呢?
recommend-type

利用pyecharts读取csv并进行数据统计可视化的实现

主要介绍了利用pyecharts读取csv并进行数据统计可视化的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

保险服务门店新年工作计划PPT.pptx

在保险服务门店新年工作计划PPT中,包含了五个核心模块:市场调研与目标设定、服务策略制定、营销与推广策略、门店形象与环境优化以及服务质量监控与提升。以下是每个模块的关键知识点: 1. **市场调研与目标设定** - **了解市场**:通过收集和分析当地保险市场的数据,包括产品种类、价格、市场需求趋势等,以便准确把握市场动态。 - **竞争对手分析**:研究竞争对手的产品特性、优势和劣势,以及市场份额,以进行精准定位和制定有针对性的竞争策略。 - **目标客户群体定义**:根据市场需求和竞争情况,明确服务对象,设定明确的服务目标,如销售额和客户满意度指标。 2. **服务策略制定** - **服务计划制定**:基于市场需求定制服务内容,如咨询、报价、理赔协助等,并规划服务时间表,保证服务流程的有序执行。 - **员工素质提升**:通过专业培训提升员工业务能力和服务意识,优化服务流程,提高服务效率。 - **服务环节管理**:细化服务流程,明确责任,确保服务质量和效率,强化各环节之间的衔接。 3. **营销与推广策略** - **节日营销活动**:根据节庆制定吸引人的活动方案,如新春送福、夏日促销,增加销售机会。 - **会员营销**:针对会员客户实施积分兑换、优惠券等策略,增强客户忠诚度。 4. **门店形象与环境优化** - **环境设计**:优化门店外观和内部布局,营造舒适、专业的服务氛围。 - **客户服务便利性**:简化服务手续和所需材料,提升客户的体验感。 5. **服务质量监控与提升** - **定期评估**:持续监控服务质量,发现问题后及时调整和改进,确保服务质量的持续提升。 - **流程改进**:根据评估结果不断优化服务流程,减少等待时间,提高客户满意度。 这份PPT旨在帮助保险服务门店在新的一年里制定出有针对性的工作计划,通过科学的策略和细致的执行,实现业绩增长和客户满意度的双重提升。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果

![MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果](https://img-blog.csdnimg.cn/d3bd9b393741416db31ac80314e6292a.png) # 1. 图像去噪基础 图像去噪旨在从图像中去除噪声,提升图像质量。图像噪声通常由传感器、传输或处理过程中的干扰引起。了解图像噪声的类型和特性对于选择合适的去噪算法至关重要。 **1.1 噪声类型** * **高斯噪声:**具有正态分布的加性噪声,通常由传感器热噪声引起。 * **椒盐噪声:**随机分布的孤立像素,值要么为最大值(白色噪声),要么为最小值(黑色噪声)。 * **脉冲噪声
recommend-type

InputStream in = Resources.getResourceAsStream

`Resources.getResourceAsStream`是MyBatis框架中的一个方法,用于获取资源文件的输入流。它通常用于加载MyBatis配置文件或映射文件。 以下是一个示例代码,演示如何使用`Resources.getResourceAsStream`方法获取资源文件的输入流: ```java import org.apache.ibatis.io.Resources; import java.io.InputStream; public class Example { public static void main(String[] args) {
recommend-type

车辆安全工作计划PPT.pptx

"车辆安全工作计划PPT.pptx" 这篇文档主要围绕车辆安全工作计划展开,涵盖了多个关键领域,旨在提升车辆安全性能,降低交通事故发生率,以及加强驾驶员的安全教育和交通设施的完善。 首先,工作目标是确保车辆结构安全。这涉及到车辆设计和材料选择,以增强车辆的结构强度和耐久性,从而减少因结构问题导致的损坏和事故。同时,通过采用先进的电子控制和安全技术,提升车辆的主动和被动安全性能,例如防抱死刹车系统(ABS)、电子稳定程序(ESP)等,可以显著提高行驶安全性。 其次,工作内容强调了建立和完善车辆安全管理体系。这包括制定车辆安全管理制度,明确各级安全管理责任,以及确立安全管理的指导思想和基本原则。同时,需要建立安全管理体系,涵盖安全组织、安全制度、安全培训和安全检查等,确保安全管理工作的系统性和规范性。 再者,加强驾驶员安全培训是另一项重要任务。通过培训提高驾驶员的安全意识和技能水平,使他们更加重视安全行车,了解并遵守交通规则。培训内容不仅包括交通法规,还涉及安全驾驶技能和应急处置能力,以应对可能发生的突发情况。 此外,文档还提到了严格遵守交通规则的重要性。这需要通过宣传和执法来强化,以降低由于违反交通规则造成的交通事故。同时,优化道路交通设施,如改善交通标志、标线和信号灯,可以提高道路通行效率,进一步增强道路安全性。 在实际操作层面,工作计划中提到了车辆定期检查的必要性,包括对刹车、转向、悬挂、灯光、燃油和电器系统的检查,以及根据车辆使用情况制定检查计划。每次检查后应记录问题并及时处理,以确保车辆始终处于良好状态。 最后,建立车辆安全信息管理系统也是关键。通过对车辆事故和故障情况进行记录和分析,可以为安全管理提供数据支持,以便及时发现问题,预防潜在风险,并对事故进行有效处理和责任追究。 这份车辆安全工作计划全面覆盖了从车辆本身到驾驶员行为,再到道路环境的诸多方面,旨在构建一个全方位、多层次的车辆安全管理体系,以降低交通事故风险,保障道路交通安全。