Graph Transformer代码示例、
时间: 2024-05-04 17:14:26 浏览: 405
Graph Transformer是一种能够处理图数据的Transformer模型,以下是一个使用PyTorch实现的Graph Transformer的示例代码。其中,该示例代码使用了DGL库来处理图数据,如果您想要运行该示例代码,需要先安装DGL库。
```python
import dgl
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl.nn.pytorch import GraphConv
class GraphTransformer(nn.Module):
def __init__(self, in_dim, hidden_dim, num_heads, num_layers, dropout):
super(GraphTransformer, self).__init__()
self.layers = nn.ModuleList()
self.norms = nn.ModuleList()
for i in range(num_layers):
self.layers.append(
nn.MultiheadAttention(hidden_dim, num_heads, dropout)
)
self.norms.append(nn.LayerNorm(hidden_dim))
self.layers.append(
GraphConv(hidden_dim, hidden_dim)
)
self.norms.append(nn.LayerNorm(hidden_dim))
def forward(self, g, inputs):
h = inputs
for i in range(len(self.layers)):
if i % 2 == 0:
h = self.layers[i](h, h, h)
else:
h = self.layers[i](g, h)
h = self.norms[i](h)
h = F.relu(h)
return h
```
其中,GraphTransformer模型主要包括以下几个组成部分:
1.多头自注意力层(MultiheadAttention)
2.图卷积层(GraphConv)
3.残差连接(LayerNorm)
阅读全文