pcie deskew

时间: 2024-09-02 11:03:18 浏览: 70
PCIe Deskew是指在PCI Express(PCIe)总线系统中,对数据传输进行校准的过程,以确保在高速传输中各条路径上的信号能够正确同步。由于PCIe是基于差分信号的高速串行总线,信号传输在不同通道之间可能会因为路径长度不一致、PCB布线延迟等因素导致信号到达接收端的时间不同步,这种现象称为信号时序偏斜(Skew)。时序偏斜可能导致数据传输错误,特别是在高速模式下。 为了减小或消除这种偏斜,PCIe设备通常会实现 Deskew 机制。这通常涉及到以下几个步骤: 1. 发送端的训练序列(Training Sequences):在PCIe设备建立链路时,发送端会发送特定的训练序列,接收端通过分析这些序列来了解信号偏斜的状况。 2. 接收端的调整(Adjustments):接收端根据接收到的训练序列,调整其内部的相位锁定环(PLL)或其他延迟补偿机制,以便对接收到的数据进行重对齐。 3. 传输前的预加重(Pre-emphasis):在一些情况下,发送端可能会使用预加重技术,提前对信号进行加强,以补偿在传输过程中可能遇到的衰减。 4. 自动调整(Adaptive Equalization):自动调整是一种常见的补偿方法,它使用算法来分析信号的质量并动态地调整接收器以补偿偏斜。 通过这些机制,PCIe设备能够在不同长度和质量的信号路径上维持较高的信号完整性和传输效率。
相关问题

TMDS deskew

TMDS (Transition Minimized Differential Signaling) 是一种高速串行数据传输标准,常用于像HDMI、DisplayPort等高分辨率视频接口。Deskew(去偏移或校准)是指在TMDS信号传输过程中,为了纠正由于物理连接引起的信号相位失真(skew,即偏斜),而采取的一种技术。 在TMDS中,数据是通过四个差分信号线(一对红色/绿色/蓝色,再加上一个时钟线)来传输的。每个数据周期都会经历一个"预编码"阶段,然后是"发送"阶段。接收端需要对这些信号进行精确的时间对齐(deskewing)才能解码出原始的数据信息。 Deskew通常涉及到硬件电路设计,比如均衡器、锁相环路等,以确保接收端和发送端之间的信号同步。

Periodic Deskew

Periodic Deskew 是一种解串器,用于将输入信号的时钟周期性地进行校正,使得输出信号的数据时钟与输入信号的数据时钟保持同步。它通常应用于高速串行通信系统中,可以解决时钟漂移和时钟抖动等问题,提高数据传输的可靠性和稳定性。Periodic Deskew 的实现方式包括基于锁相环(PLL)和基于延迟锁定环(DLL)等。

相关推荐

class CardPredictor: def __del__(self): self.save_traindata() def train_svm(self): # 识别英文字母和数字 self.model = SVM(C=1, gamma=0.5) # 识别中文 self.modelchinese = SVM(C=1, gamma=0.5) if os.path.exists("svm.dat"): self.model.load("svm.dat") else: chars_train = [] chars_label = [] for root, dirs, files in os.walk("train\\chars2"): if len(os.path.basename(root)) > 1: continue root_int = ord(os.path.basename(root)) for filename in files: filepath = os.path.join(root, filename) digit_img = cv2.imread(filepath) digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY) chars_train.append(digit_img) chars_label.append(root_int) chars_train = list(map(deskew, chars_train)) chars_train = preprocess_hog(chars_train) chars_label = np.array(chars_label) self.model.train(chars_train, chars_label) if os.path.exists("svmchinese.dat"): self.modelchinese.load("svmchinese.dat") else: chars_train = [] chars_label = [] for root, dirs, files in os.walk("train\\charsChinese"): if not os.path.basename(root).startswith("zh_"): continue pinyin = os.path.basename(root) index = provinces.index(pinyin) + PROVINCE_START + 1 # 1是拼音对应的汉字 for filename in files: filepath = os.path.join(root, filename) digit_img = cv2.imread(filepath) digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY) chars_train.append(digit_img) chars_label.append(index) chars_train = list(map(deskew, chars_train)) chars_train = preprocess_hog(chars_train) chars_label = np.array(chars_label) self.modelchinese.train(chars_train, chars_label)

import time start_time = datetime.datetime.now() print("start preprocessing..................") n = 10000 (X_train, train_labels) = rm.load_mnist('E:\design project\wenquxing22a-master\sw\swSim-mnist\scripts', kind='train') otsu_imgs = [] images = [] for (k, j) in zip(range(n),range(1, n + 1)): o = sf.OTSU(X_train[k].reshape([28,28])) otsu_imgs.append(o.Otsu()) sf.processBar(j, n, "Otsuing") print("") # image normalization for (img, i) in zip(otsu_imgs, range(1, n + 1)): images.append(sf.deskew(img / 255.0)) sf.processBar(i, n, "Normalization") print("") images = np.asarray(images) np.save("E:/design project/wenquxing22a-master/sw/swSim-mnist/scripts/result date/nomalizedData_after_OTSU.npy", images) np.save("E:/design project/wenquxing22a-master/sw/swSim-mnist/scripts/result date/label.npy", train_labels) otsu_imgs_test = [] X_test, test_label = rm.load_mnist(r'E:\design project\wenquxing22a-master\sw\swSim-mnist\scripts',kind='t10k') testimages = [] for (k, j) in zip(range(n),range(1, n + 1)): o = sf.OTSU(X_test[k].reshape([28,28])) otsu_imgs_test.append(o.Otsu()) sf.processBar(j, n, "Otsuing") print("") # image normalization for img in otsu_imgs_test: testimages.append(sf.deskew(img / 255.0)) #soft_test = sf.imgSoft(testimages, soft_test, 0.80) #soft_test = np.asarray(soft_test) np.save("E:/design project/wenquxing22a-master/sw/swSim-mnist/scripts/result date/nomalizedDataTest.npy", testimages) np.save("E:/design project/wenquxing22a-master/sw/swSim-mnist/scripts/result date//label_test.npy",test_label) end_time = datetime.datetime.now() print("done!") print("running time: ", end_time - start_time)

最新推荐

recommend-type

MIPI_D-PHY_Spec_V1.2.pdf

MIPI D-PHY(MIPI Data PHYysical Layer)是MIPI联盟制定的一种高速物理层接口标准,主要用于移动设备中的传感器、摄像头和显示等模块之间的数据传输。MIPI D-PHY V1.2版本是在2014年发布,是对V1.1版本的更新和改进...
recommend-type

如何实现FPGA到DDR3 SDRAM存储器的连接

用于DQ去偏移(deskew)的可变延时采用可变的输入和输出延时来跟踪长度失配和电气去偏移。精细的输入和输出延时分辨率(即50皮秒步进)被用于更精细的DQS间去偏移(独立于均衡功能),这种偏移是由电路板长度失配或...
recommend-type

_Command_line_settings_desktop_wallpaper_tool,_Su_command-wallpa

_Command_line_settings_desktop_wallpaper_tool,_Su_command-wallpaper
recommend-type

IMG_20240917_151703.jpg

IMG_20240917_151703.jpg
recommend-type

吉他谱_Pneuma - Tool.pdf

初级入门吉他谱 guitar tab
recommend-type

李兴华Java基础教程:从入门到精通

"MLDN 李兴华 java 基础笔记" 这篇笔记主要涵盖了Java的基础知识,由知名讲师李兴华讲解。Java是一门广泛使用的编程语言,它的起源可以追溯到1991年的Green项目,最初命名为Oak,后来发展为Java,并在1995年推出了第一个版本JAVA1.0。随着时间的推移,Java经历了多次更新,如JDK1.2,以及在2005年的J2SE、J2ME、J2EE的命名变更。 Java的核心特性包括其面向对象的编程范式,这使得程序员能够以类和对象的方式来模拟现实世界中的实体和行为。此外,Java的另一个显著特点是其跨平台能力,即“一次编写,到处运行”,这得益于Java虚拟机(JVM)。JVM允许Java代码在任何安装了相应JVM的平台上运行,无需重新编译。Java的简单性和易读性也是它广受欢迎的原因之一。 JDK(Java Development Kit)是Java开发环境的基础,包含了编译器、调试器和其他工具,使得开发者能够编写、编译和运行Java程序。在学习Java基础时,首先要理解并配置JDK环境。笔记强调了实践的重要性,指出学习Java不仅需要理解基本语法和结构,还需要通过实际编写代码来培养面向对象的思维模式。 面向对象编程(OOP)是Java的核心,包括封装、继承和多态等概念。封装使得数据和操作数据的方法结合在一起,保护数据不被外部随意访问;继承允许创建新的类来扩展已存在的类,实现代码重用;多态则允许不同类型的对象对同一消息作出不同的响应,增强了程序的灵活性。 Java的基础部分包括但不限于变量、数据类型、控制结构(如条件语句和循环)、方法定义和调用、数组、类和对象的创建等。这些基础知识构成了编写任何Java程序的基础。 此外,笔记还提到了Java在早期的互联网应用中的角色,如通过HotJava浏览器技术展示Java applet,以及随着技术发展衍生出的J2SE(Java Standard Edition)、J2ME(Java Micro Edition)和J2EE(Java Enterprise Edition)这三个平台,分别针对桌面应用、移动设备和企业级服务器应用。 学习Java的过程中,不仅要掌握语法,还要理解其背后的设计哲学,形成将现实生活问题转化为计算机语言的习惯。通过不断地实践和思考,才能真正掌握Java的精髓,成为一个熟练的Java开发者。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

尝试使用 Python 实现灰度图像的反色运算。反色运 算的基本公式为 T(x,y)=255-S(x,y)。其中,T 代表反色后 的图像,S 代表原始图像

在Python中,我们可以使用PIL库来处理图像,包括进行灰度图像的反色操作。首先,你需要安装Pillow库,如果还没有安装可以使用`pip install pillow`命令。 下面是一个简单的函数,它接受一个灰度图像作为输入,然后通过公式T(x, y) = 255 - S(x, y)计算每个像素点的反色值: ```python from PIL import Image def invert_grayscale_image(image_path): # 打开灰度图像 img = Image.open(image_path).convert('L')
recommend-type

U盘与硬盘启动安装教程:从菜鸟到专家

"本教程详细介绍了如何使用U盘和硬盘作为启动安装工具,特别适合初学者。" 在计算机领域,有时候我们需要在没有操作系统或者系统出现问题的情况下重新安装系统。这时,U盘或硬盘启动安装工具就显得尤为重要。本文将详细介绍如何制作U盘启动盘以及硬盘启动的相关知识。 首先,我们来谈谈U盘启动的制作过程。这个过程通常分为几个步骤: 1. **格式化U盘**:这是制作U盘启动盘的第一步,目的是清除U盘内的所有数据并为其准备新的存储结构。你可以选择快速格式化,这会更快地完成操作,但请注意这将永久删除U盘上的所有信息。 2. **使用启动工具**:这里推荐使用unetbootin工具。在启动unetbootin时,你需要指定要加载的ISO镜像文件。ISO文件是光盘的镜像,包含了完整的操作系统安装信息。如果你没有ISO文件,可以使用UltraISO软件将实际的光盘转换为ISO文件。 3. **制作启动盘**:在unetbootin中选择正确的ISO文件后,点击开始制作。这个过程可能需要一些时间,完成后U盘就已经变成了一个可启动的设备。 4. **配置启动文件**:为了确保电脑启动后显示简体中文版的Linux,你需要将syslinux.cfg配置文件覆盖到U盘的根目录下。这样,当电脑从U盘启动时,会直接进入中文界面。 接下来,我们讨论一下光盘ISO文件的制作。如果你手头有物理光盘,但需要将其转换为ISO文件,可以使用UltraISO软件的以下步骤: 1. **启动UltraISO**:打开软件,找到“工具”菜单,选择“制作光盘映像文件”。 2. **选择源光盘**:在CD-ROM选项中,选择包含你想要制作成ISO文件的光盘的光驱。 3. **设定输出信息**:确定ISO文件的保存位置和文件名,这将是你的光盘镜像文件。 4. **开始制作**:点击“制作”,软件会读取光盘内容并生成ISO文件,等待制作完成。 通过以上步骤,你就能成功制作出U盘启动盘和光盘ISO文件,从而能够灵活地进行系统的安装或修复。如果你在操作过程中遇到问题,也可以访问提供的淘宝小店进行交流和寻求帮助。 U盘和硬盘启动安装工具是计算机维护和系统重装的重要工具,了解并掌握其制作方法对于任何级别的用户来说都是非常有益的。随着技术的发展,U盘启动盘由于其便携性和高效性,已经成为了现代装机和应急恢复的首选工具。