verilog 加窗fft
时间: 2023-11-22 13:05:46 浏览: 376
在 Verilog 中实现窗函数加窗 FFT(Fast Fourier Transform),可以按照以下步骤:
1. 定义一个复数类型:在 Verilog 中,我们需要定义一个复数类型来表示输入和输出数据。可以使用结构体来实现,例如:
```verilog
typedef struct {
real r;
real i;
} complex;
```
2. 实现窗函数:窗函数用于减少频谱泄漏的影响。常见的窗函数包括汉明窗(Hann window)、汉宁窗(Hamming window)等。你可以选择其中一种窗函数,并在 Verilog 中实现。以下是一个汉明窗函数的示例:
```verilog
module hanning(
input [N-1:0] index,
output real w
);
reg signed [N-1:0] index_signed;
reg signed [N-1:0] index_signed_half;
reg signed [N-1:0] index_signed_minus_one;
reg real w_tmp;
always @(index) begin
index_signed = index;
index_signed_half = index_signed >> 1;
index_signed_minus_one = index_signed - 1;
if (index_signed < N/2) begin
w_tmp = 0.5 - 0.5 * cos(2 * M_PI * index_signed / (N-1));
end else if (index_signed == N/2) begin
w_tmp = 0.5;
end else begin
w_tmp = 0.5 - 0.5 * cos(2 * M_PI * (index_signed - N) / (N-1));
end
end
assign w = w_tmp;
endmodule
```
3. 实现 FFT 模块:根据加窗 FFT 算法(例如 Cooley-Tukey 算法),在 Verilog 中实现 FFT 模块。FFT 模块需要包含输入/输出接口以及计算 FFT 的逻辑。以下是一个简化的示例:
```verilog
module fft(
input [N-1:0] in_real,
input [N-1:0] in_imag,
output [N-1:0] out_real,
output [N-1:0] out_imag
);
reg signed [N-1:0] butterfly_index;
reg signed [N-1:0] twiddle_factor_index;
complex in_data[N];
complex out_data[N];
// 输入数据
always @(in_real or in_imag) begin
for (integer i = 0; i < N; i = i + 1) begin
in_data[i].r = in_real[i];
in_data[i].i = in_imag[i];
end
end
// FFT 计算
always @(*) begin
for (integer stage = 2; stage <= N; stage = stage * 2) begin
for (integer sub_stage = 1; sub_stage <= stage/2; sub_stage = sub_stage * 2) begin
for (integer butterfly = 0; butterfly < N/2; butterfly = butterfly + stage) begin
butterfly_index = butterfly + sub_stage - 1;
twiddle_factor_index = butterfly * (N / stage);
complex butterfly_input_even = in_data[butterfly_index];
complex butterfly_input_odd = in_data[butterfly_index + sub_stage] * twiddle_factor[twiddle_factor_index];
complex butterfly_output_even;
complex butterfly_output_odd;
butterfly_output_even.r = butterfly_input_even.r + butterfly_input_odd.r;
butterfly_output_even.i = butterfly_input_even.i + butterfly_input_odd.i;
butterfly_output_odd.r = butterfly_input_even.r - butterfly_input_odd.r;
butterfly_output_odd.i = butterfly_input_even.i - butterfly_input_odd.i;
out_data[butterfly_index] = butterfly_output_even;
out_data[butterfly_index + sub_stage] = butterfly_output_odd;
end
end
for (integer i = 0; i < N; i = i + 1) begin
in_data[i] = out_data[i];
end
end
end
// 输出结果
always @(out_data) begin
for (integer i = 0; i < N; i = i + 1) begin
out_real[i] = out_data[i].r;
out_imag[i] = out_data[i].i;
end
end
endmodule
```
请注意,这只是一个简化的示例,实际的 FFT 模块可能需要更多的逻辑来处理复杂的输入/输出数据和计算要求。你可以根据自己的需求进行修改和优化。
希望以上信息对你有所帮助!如果你还有其他问题,请随时提问。
阅读全文