gmm-ubm c++代码
时间: 2023-10-01 22:02:28 浏览: 145
GMM-UBM (Gaussian Mixture Model - Universal Background Model) 是一种语音识别中常用的声纹识别方法。下面是一个简化的 GMM-UBM 的 C 代码示例:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define MAX_ITERATIONS 1000
#define MAX_COMPONENTS 16
#define FEATURE_DIMENSION 13
typedef struct {
double mean[FEATURE_DIMENSION];
double covariance[FEATURE_DIMENSION][FEATURE_DIMENSION];
double weight;
} Gaussian;
typedef struct {
int num_components;
Gaussian components[MAX_COMPONENTS];
} GMM;
void train_gmm_ubm(double features[][FEATURE_DIMENSION], int num_features, GMM *gmm) {
int i, j, k, t;
int num_iterations = 0;
double log_likelihood = 0.0;
double prev_log_likelihood = -INFINITY;
double responsibilities[num_features][MAX_COMPONENTS];
// Initialize GMM parameters randomly
for (i = 0; i < gmm->num_components; i++) {
for (j = 0; j < FEATURE_DIMENSION; j++) {
gmm->components[i].mean[j] = (rand() / (double)RAND_MAX) * 10.0;
}
for (j = 0; j < FEATURE_DIMENSION; j++) {
for (k = 0; k < FEATURE_DIMENSION; k++) {
gmm->components[i].covariance[j][k] = (rand() / (double)RAND_MAX) * 10.0;
}
}
gmm->components[i].weight = 1.0 / gmm->num_components;
}
while (num_iterations < MAX_ITERATIONS && log_likelihood - prev_log_likelihood > 0.01) {
prev_log_likelihood = log_likelihood;
log_likelihood = 0.0;
// Expectation step: calculate responsibilities
for (t = 0; t < num_features; t++) {
double sum = 0.0;
for (i = 0; i < gmm->num_components; i++) {
double exponent = 0.0;
double determinant = 1.0;
// Calculate Mahalanobis distance
for (j = 0; j < FEATURE_DIMENSION; j++) {
for (k = 0; k < FEATURE_DIMENSION; k++) {
determinant *= gmm->components[i].covariance[j][k];
}
exponent += (features[t][j] - gmm->components[i].mean[j]) *
(features[t][j] - gmm->components[i].mean[j]) /
gmm->components[i].covariance[j][j];
}
responsibilities[t][i] = gmm->components[i].weight * exp(-0.5 * exponent) /
sqrt(pow(2 * M_PI, FEATURE_DIMENSION) * determinant);
sum += responsibilities[t][i];
}
// Normalize responsibilities
for (i = 0; i < gmm->num_components; i++) {
responsibilities[t][i] /= sum;
}
log_likelihood += log(sum);
}
// Maximization step: update GMM parameters
for (i = 0; i < gmm->num_components; i++) {
double total_weight = 0.0;
// Update mean
for (j = 0; j < FEATURE_DIMENSION; j++) {
double weighted_sum = 0.0;
for (t = 0; t < num_features; t++) {
weighted_sum += responsibilities[t][i] * features[t][j];
}
gmm->components[i].mean[j] = weighted_sum / sum;
}
// Update covariance
for (j = 0; j < FEATURE_DIMENSION; j++) {
for (k = 0; k < FEATURE_DIMENSION; k++) {
double weighted_sum = 0.0;
for (t = 0; t < num_features; t++) {
weighted_sum += responsibilities[t][i] *
(features[t][j] - gmm->components[i].mean[j]) *
(features[t][k] - gmm->components[i].mean[k]);
}
gmm->components[i].covariance[j][k] = weighted_sum / sum;
}
}
// Update weight
for (t = 0; t < num_features; t++) {
total_weight += responsibilities[t][i];
}
gmm->components[i].weight = total_weight / num_features;
}
num_iterations++;
}
}
int main() {
// Example usage of GMM-UBM training
double features[100][FEATURE_DIMENSION];
int num_features = 100;
GMM gmm;
// Load features from dataset
// Train GMM-UBM model
gmm.num_components = 4;
train_gmm_ubm(features, num_features, &gmm);
return 0;
}
```
上述代码是一个简单的 GMM-UBM 训练的示例,其中包含了期望最大化 (EM) 算法的实现。你可以将训练数据加载到 `features` 数组中,并按需设置 GMM 组件的数量和特征维度。代码中的注释提供了更详细的解释。请注意,这只是一个简化版本的代码,实际应用中可能需要进行更多的参数调整和优化。
阅读全文