c语言求解8数码问题
时间: 2024-06-15 09:07:42 浏览: 50
C语言求解8数码问题
C语言可以用来求解8数码问题,这是一个经典的搜索问题。8数码问题是一个在3x3的棋盘上,通过移动数字块的位置,将初始状态转化为目标状态的问题。在C语言中,可以使用广度优先搜索(BFS)或者深度优先搜索(DFS)等算法来解决这个问题。
下面是一个使用BFS算法求解8数码问题的示例代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#define N 3
// 定义状态结构体
typedef struct {
int board[N][N];
int zero_row;
int zero_col;
} State;
// 定义队列节点结构体
typedef struct {
State state;
int depth;
} Node;
// 判断两个状态是否相等
bool is_equal(State s1, State s2) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
if (s1.board[i][j] != s2.board[i][j]) {
return false;
}
}
}
return true;
}
// 判断状态是否为目标状态
bool is_goal(State state) {
int count = 1;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
if (state.board[i][j] != count % (N * N)) {
return false;
}
count++;
}
}
return true;
}
// 复制状态
void copy_state(State* dest, State src) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
dest->board[i][j] = src.board[i][j];
}
}
dest->zero_row = src.zero_row;
dest->zero_col = src.zero_col;
}
// 移动数字块
void move(State* state, int row, int col) {
state->board[state->zero_row][state->zero_col] = state->board[row][col];
state->board[row][col] = 0;
state->zero_row = row;
state->zero_col = col;
}
// 打印状态
void print_state(State state) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
printf("%d ", state.board[i][j]);
}
printf("\n");
}
printf("\n");
}
// 求解8数码问题
void solve(State initial_state) {
// 定义队列
Node queue[10000];
int front = 0;
int rear = 0;
// 定义访问数组
bool visited[10000] = {false};
// 将初始状态入队
Node initial_node;
initial_node.state = initial_state;
initial_node.depth = 0;
queue[rear++] = initial_node;
visited[0] = true;
while (front < rear) {
// 出队
Node current_node = queue[front++];
State current_state = current_node.state;
// 判断是否为目标状态
if (is_goal(current_state)) {
printf("找到解答,步数为:%d\n", current_node.depth);
return;
}
// 扩展当前状态的子状态
int row = current_state.zero_row;
int col = current_state.zero_col;
// 上移
if (row > 0) {
State new_state;
copy_state(&new_state, current_state);
move(&new_state, row - 1, col);
if (!visited[new_state.board[0][0] * 1000000 + new_state.board[0][1] * 100000 + new_state.board[0][2] * 10000 +
new_state.board[1][0] * 1000 + new_state.board[1][1] * 100 + new_state.board[1][2] * 10 +
new_state.board[2][0]]) {
Node new_node;
new_node.state = new_state;
new_node.depth = current_node.depth + 1;
queue[rear++] = new_node;
visited[new_state.board[0][0] * 1000000 + new_state.board[0][1] * 100000 + new_state.board[0][2] * 10000 +
new_state.board[1][0] * 1000 + new_state.board[1][1] * 100 + new_state.board[1][2] * 10 +
new_state.board[2][0]] = true;
}
}
// 下移
if (row < N - 1) {
State new_state;
copy_state(&new_state, current_state);
move(&new_state, row + 1, col);
if (!visited[new_state.board[0][0] * 1000000 + new_state.board[0][1] * 100000 + new_state.board[0][2] * 10000 +
new_state.board[1][0] * 1000 + new_state.board[1][1] * 100 + new_state.board[1][2] * 10 +
new_state.board[2][0]]) {
Node new_node;
new_node.state = new_state;
new_node.depth = current_node.depth + 1;
queue[rear++] = new_node;
visited[new_state.board[0][0] * 1000000 + new_state.board[0][1] * 100000 + new_state.board[0][2] * 10000 +
new_state.board[1][0] * 1000 + new_state.board[1][1] * 100 + new_state.board[1][2] * 10 +
new_state.board[2][0]] = true;
}
}
// 左移
if (col > 0) {
State new_state;
copy_state(&new_state, current_state);
move(&new_state, row, col - 1);
if (!visited[new_state.board[0][0] * 1000000 + new_state.board[0][1] * 100000 + new_state.board[0][2] * 10000 +
new_state.board[1][0] * 1000 + new_state.board[1][1] * 100 + new_state.board[1][2] * 10 +
new_state.board[2][0]]) {
Node new_node;
new_node.state = new_state;
new_node.depth = current_node.depth + 1;
queue[rear++] = new_node;
visited[new_state.board[0][0] * 1000000 + new_state.board[0][1] * 100000 + new_state.board[0][2] * 10000 +
new_state.board[1][0] * 1000 + new_state.board[1][1] * 100 + new_state.board[1][2] * 10 +
new_state.board[2][0]] = true;
}
}
// 右移
if (col < N - 1) {
State new_state;
copy_state(&new_state, current_state);
move(&new_state, row, col + 1);
if (!visited[new_state.board[0][0] * 1000000 + new_state.board[0][1] * 100000 + new_state.board[0][2] * 10000 +
new_state.board[1][0] * 1000 + new_state.board[1][1] * 100 + new_state.board[1][2] * 10 +
new_state.board[2][0]]) {
Node new_node;
new_node.state = new_state;
new_node.depth = current_node.depth + 1;
queue[rear++] = new_node;
visited[new_state.board[0][0] * 1000000 + new_state.board[0][1] * 100000 + new_state.board[0][2] * 10000 +
new_state.board[1][0] * 1000 + new_state.board[1][1] * 100 + new_state.board[1][2] * 10 +
new_state.board[2][0]] = true;
}
}
}
printf("未找到解答!\n");
}
int main() {
State initial_state = {
{{2, 8, 3},
{1, 6, 4},
{7, 0, 5}},
2,
1
};
solve(initial_state);
return 0;
}
```
这段代码使用了一个队列来存储待搜索的状态,使用一个访问数组来记录已经访问过的状态,通过BFS算法逐步扩展状态,直到找到目标状态或者队列为空。
阅读全文