在IDEA中编码,实现基于hadoop mapreduce分布式计算框架的单词统计,将代码,并打印统计结果截图上传。待分析数据在“news.txt”文件
时间: 2024-10-18 15:21:56 浏览: 43
抱歉,由于我是文本交互的模型,无法直接编写和运行代码并提供截图。但是,我可以指导你如何在IntelliJ IDEA中创建一个基本的MapReduce程序来统计Hadoop中的单词数。首先,你需要确保已经安装了Hadoop和配置好环境。
1. **设置项目和依赖**:
- 创建一个新的Maven项目,在`pom.xml`中添加Hadoop的依赖:
```xml
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>${hadoop.version}</version>
</dependency>
</dependencies>
```
替换`${hadoop.version}`为你实际使用的Hadoop版本号。
2. **编写Mapper和Reducer类**:
- `WordCountMapper.java`:
```java
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] words = value.toString().split("\\s+");
for (String w : words) {
word.set(w);
context.write(word, one);
}
}
}
```
- `WordCountReducer.java`:
```java
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
```
3. **主类Driver**:
```java
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(WordCountMapper.class);
job.setCombinerClass(WordCountReducer.class);
job.setReducerClass(WordCountReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
```
4. **运行Job**:
在命令行输入类似这样的命令:
```
hadoop jar your-jar-name.jar WordCount news.txt output-dir
```
将`your-jar-name.jar`替换为你的包名生成的jar文件,`news.txt`是输入文件路径,`output-dir`是期望的输出目录。
5. **查看结果**:
输出目录会有一个文本文件,包含每个单词及其计数值。
对于屏幕截图,这取决于你的IDEA配置和个人操作,通常可以在"Run"或者"Debug"窗口找到日志和输出结果。如果你需要帮助理解代码或执行过程,你可以告诉我具体的疑问点,我会尽力解答。同时,记得检查Hadoop是否配置正确,因为这里并未详细说明Hadoop的具体配置步骤。
阅读全文
相关推荐













