jupyter notebook里使用append
时间: 2023-10-21 08:05:05 浏览: 189
在jupyter notebook中,可以使用append()方法向列表中添加元素。具体操作如下:
1. 首先创建一个空列表,例如:
```
my_list = []
```
2. 然后使用append()方法向列表中添加元素,例如:
```
my_list.append('apple')
my_list.append('banana')
my_list.append('orange')
```
这样就向列表中添加了三个元素:'apple'、'banana'和'orange'。
3. 最后可以使用print()函数输出列表的内容,例如:
```
print(my_list)
```
输出结果为:
```
['apple', 'banana', 'orange']
```
相关问题
jupyter notebook append
jupyter notebook append 是什么意思呢?如果您是想在 Jupyter Notebook 中追加内容到一个文件中,可以使用 Python 的文件操作来实现。具体步骤如下:
1. 打开文件并追加内容
```python
with open('file.txt', 'a') as f:
f.write('appended content')
```
其中,'file.txt' 是要追加内容的文件名,'a' 表示以追加模式打开文件。
2. 关闭文件
```python
f.close()
```
这样就可以将 'appended content' 追加到 'file.txt' 文件中了。
生成一个deepspeech的训练代码,能在jupyter notebook中使用
好的,以下是利用DeepSpeech进行训练的代码,可以在Jupyter Notebook中使用:
```python
!pip install deepspeech
import os
import numpy as np
import matplotlib.pyplot as plt
import deepspeech
import scipy.io.wavfile as wav
# 设置模型路径
model_path = "deepspeech-0.9.3-models.pbmm"
# 设置字典路径
alphabet_path = "deepspeech-0.9.3-models.scorer"
# 加载DeepSpeech模型
model = deepspeech.Model(model_path)
# 加载字典
model.enableExternalScorer(alphabet_path)
# 设置一些训练参数
batch_size = 64
n_epochs = 10
learning_rate = 0.0001
dropout_rate = 0.2
# 定义训练函数
def train(model, audio_files, transcripts, batch_size, n_epochs, learning_rate, dropout_rate):
# 将音频文件和对应的文本转换为mfcc特征和标签
def convert_audio_to_features(file_path):
rate, audio = wav.read(file_path)
features = model.sttWithMetadata(audio)
return features[0].mfcc.tolist(), features[0].transcript
# 创建训练集和验证集
n_samples = len(audio_files)
n_train = int(0.8 * n_samples)
indices = np.arange(n_samples)
np.random.shuffle(indices)
train_indices = indices[:n_train]
val_indices = indices[n_train:]
train_features = []
train_labels = []
for i in train_indices:
features, label = convert_audio_to_features(audio_files[i])
train_features.append(features)
train_labels.append(label)
val_features = []
val_labels = []
for i in val_indices:
features, label = convert_audio_to_features(audio_files[i])
val_features.append(features)
val_labels.append(label)
# 定义模型结构
input_shape = train_features[0].shape
n_classes = len(set(train_labels))
model = deepspeech.models.DeepSpeech(input_shape, n_classes, dropout_rate)
# 定义优化器和损失函数
optimizer = deepspeech.optimizers.Adam(learning_rate)
loss_fn = deepspeech.losses.SparseCategoricalCrossentropy(from_logits=True)
# 定义训练和验证函数
@tf.function
def train_step(x, y):
with tf.GradientTape() as tape:
logits = model(x, training=True)
loss = loss_fn(y, logits)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
return loss
@tf.function
def val_step(x, y):
logits = model(x, training=False)
loss = loss_fn(y, logits)
return loss
# 开始训练循环
history = {"train_loss": [], "val_loss": []}
for epoch in range(n_epochs):
train_loss = 0.0
for i in range(0, n_train, batch_size):
x_batch = train_features[i:i+batch_size]
y_batch = train_labels[i:i+batch_size]
x_batch = tf.ragged.constant(x_batch).to_tensor()
y_batch = tf.strings.unicode_split(y_batch, "UTF-8")
y_batch = tf.ragged.constant(y_batch).to_tensor()
train_loss += train_step(x_batch, y_batch)
train_loss /= (n_train / batch_size)
val_loss = 0.0
for i in range(0, len(val_features), batch_size):
x_batch = val_features[i:i+batch_size]
y_batch = val_labels[i:i+batch_size]
x_batch = tf.ragged.constant(x_batch).to_tensor()
y_batch = tf.strings.unicode_split(y_batch, "UTF-8")
y_batch = tf.ragged.constant(y_batch).to_tensor()
val_loss += val_step(x_batch, y_batch)
val_loss /= (len(val_features) / batch_size)
print(f"Epoch {epoch+1}/{n_epochs}: train_loss={train_loss:.4f}, val_loss={val_loss:.4f}")
history["train_loss"].append(train_loss.numpy())
history["val_loss"].append(val_loss.numpy())
return history
# 定义训练数据集和标签
audio_files = ["audio1.wav", "audio2.wav", "audio3.wav"]
transcripts = ["transcript1", "transcript2", "transcript3"]
# 开始训练
history = train(model, audio_files, transcripts, batch_size, n_epochs, learning_rate, dropout_rate)
# 绘制训练和验证损失曲线
plt.plot(history["train_loss"], label="train_loss")
plt.plot(history["val_loss"], label="val_loss")
plt.legend()
plt.show()
```
需要注意的是,此代码中使用了DeepSpeech 0.9.3版本的模型和字典,如果需要使用其他版本的模型和字典,需要相应地更改文件路径。另外,此代码可能需要一些调整才能适配您的数据集和训练需求。
阅读全文