糖尿病数据集回归分析,实现5个折叠。PYTHON代码
时间: 2024-09-26 21:06:52 浏览: 47
糖尿病数据集回归分析通常用于预测患者的血糖水平、血压等指标,基于机器学习模型如线性回归、决策树或者神经网络。在Python中,我们可以使用Scikit-learn库来实现这个任务,并通过交叉验证(例如K折交叉验证)提高模型的泛化能力。以下是一个简单的例子,展示如何使用K-Fold对Pandas DataFrame加载的糖尿病数据进行五折交叉验证的线性回归:
```python
import pandas as pd
from sklearn import datasets
from sklearn.model_selection import train_test_split, KFold
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
# 加载糖尿病数据集
diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建一个KFold实例
kfold = KFold(n_splits=5, shuffle=True, random_state=42)
# 定义一个函数,用于执行回归并计算MSE
def run_regression(model, X, y, kfold=kfold):
mse_scores = []
for train_index, val_index in kfold.split(X):
X_train_, y_train_ = X[train_index], y[train_index]
X_val, y_val = X[val_index], y[val_index]
model.fit(X_train_, y_train_)
y_pred = model.predict(X_val)
mse = mean_squared_error(y_val, y_pred)
mse_scores.append(mse)
return mse_scores
# 实例化线性回归模型
lr = LinearRegression()
# 执行5折交叉验证
mse_per_fold = run_regression(lr, X_train, y_train)
# 计算平均MSE
average_mse = sum(mse_per_fold) / len(mse_per_fold)
print(f"Average Mean Squared Error across all folds: {average_mse}")
#
阅读全文