编写程序,分别用岭回归、神经网络、支持向量机方法建立房价预测模型,涵盖完整的数据建模步骤,从预测误差(MSE和MAE)和决定系数(R2)对比不同模型的预测性能,并绘制不同模型预测结果和真实结果的对比曲线图。
时间: 2024-09-25 18:20:35 浏览: 87
在编写程序时,我们可以使用Python的机器学习库如scikit-learn来构建岭回归、神经网络和支持向量机的房价预测模型。以下是大致的数据建模步骤:
1. **数据获取**:
- 导入必要的库(pandas, numpy, scikit-learn等),以及加载房价数据集,比如使用`Kaggle`上的`Housing Prices`数据。
```python
import pandas as pd
import numpy as np
from sklearn.datasets import fetch_california_housing
```
2. **数据预处理**:
- 数据清洗,填充缺失值,编码分类特征(如有需要),将数据划分为训练集和测试集。
```python
data = fetch_california_housing()
X, y = data.data, data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
```
3. **模型构建**:
- **岭回归** (Lasso Regression):
```python
from sklearn.linear_model import Lasso
lasso_reg = Lasso(alpha=0.1)
lasso_reg.fit(X_train, y_train)
```
- **神经网络** (例如,使用Keras):
```python
from tensorflow.keras.models import Sequential
model = Sequential([
Dense(64, activation='relu', input_shape=(X_train.shape[1],)),
Dense(1)
])
model.compile(optimizer='adam', loss='mean_squared_error')
model.fit(X_train, y_train, epochs=50)
```
- **支持向量机** (SVM) with RBF kernel:
```python
from sklearn.svm import SVR
svm_reg = SVR(kernel='rbf')
svm_reg.fit(X_train, y_train)
```
4. **模型评估**:
- 计算预测误差(如均方根误差(MSE)和平均绝对误差(MAE)) 和决定系数(R^2)。
```python
mse_lasso = mean_squared_error(y_test, lasso_reg.predict(X_test))
mae_lasso = mean_absolute_error(y_test, lasso_reg.predict(X_test))
r2_lasso = r2_score(y_test, lasso_reg.predict(X_test))
# 神经网络和SVM同理
...
```
5. **对比分析**:
- 绘制预测结果与实际结果的散点图,并计算每种模型的MSE、MAE和R^2。
```python
import matplotlib.pyplot as plt
plt.scatter(y_test, lasso_reg.predict(X_test), label="Lasso MSE: {:.2f}, MAE: {:.2f}, R^2: {:.2f}".format(mse_lasso, mae_lasso, r2_lasso))
...
plt.legend()
plt.show()
```
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![docx](https://img-home.csdnimg.cn/images/20241231044901.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241231044901.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)