attention_unet
时间: 2023-08-31 14:11:52 浏览: 190
C知道: "Attention UNet" 是一个用于图像分割任务的神经网络模型。它是基于经典的 U-Net 架构进行改进的,引入了注意力机制来增强模型的性能。在传统的 U-Net 中,特征信息会在编码器和解码器之间进行传递,但没有明确的关注重要的特征。而 Attention UNet 通过引入注意力模块,可以自动学习重要特征,并将其集中应用于解码器的过程中,从而提高图像分割的准确性和细节保留能力。这种注意力机制能够使网络更加关注感兴趣和具有辨别性的区域,提高分割结果的质量。
相关问题
给我一份在pytorch框架下attention_unet的代码,输出特征图维度为3
好的,以下是在PyTorch框架下实现的attention_unet代码,输出特征图维度为3:
```python
import torch
import torch.nn as nn
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(DoubleConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
class AttentionBlock(nn.Module):
def __init__(self, F_g, F_l, F_int):
super(AttentionBlock, self).__init__()
self.W_g = nn.Sequential(
nn.Conv2d(F_g, F_int, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(F_int)
)
self.W_x = nn.Sequential(
nn.Conv2d(F_l, F_int, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(F_int)
)
self.psi = nn.Sequential(
nn.Conv2d(F_int, 1, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(1),
nn.Sigmoid()
)
self.relu = nn.ReLU(inplace=True)
def forward(self, g, x):
g1 = self.W_g(g)
x1 = self.W_x(x)
psi = self.relu(g1 + x1)
psi = self.psi(psi)
return x * psi
class UpSample(nn.Module):
def __init__(self, in_channels, out_channels, bilinear=True):
super(UpSample, self).__init__()
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
else:
self.up = nn.ConvTranspose2d(in_channels // 2, in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class AttentionUNet(nn.Module):
def __init__(self, in_channels=3, out_channels=3):
super(AttentionUNet, self).__init__()
self.down1 = DoubleConv(in_channels, 64)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.down2 = DoubleConv(64, 128)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.down3 = DoubleConv(128, 256)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.down4 = DoubleConv(256, 512)
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.center = DoubleConv(512, 1024)
self.up4 = UpSample(1024, 512)
self.att4 = AttentionBlock(512, 256, 128)
self.up3 = UpSample(512, 256)
self.att3 = AttentionBlock(256, 128, 64)
self.up2 = UpSample(256, 128)
self.att2 = AttentionBlock(128, 64, 32)
self.up1 = UpSample(128, 64)
self.att1 = AttentionBlock(64, 32, 16)
self.output = nn.Conv2d(64, out_channels, kernel_size=1)
def forward(self, x):
x1 = self.down1(x)
x2 = self.pool1(x1)
x2 = self.down2(x2)
x3 = self.pool2(x2)
x3 = self.down3(x3)
x4 = self.pool3(x3)
x4 = self.down4(x4)
x5 = self.pool4(x4)
x5 = self.center(x5)
x = self.up4(x5, x4)
x = self.att4(g=x4, x=x)
x = self.up3(x, x3)
x = self.att3(g=x3, x=x)
x = self.up2(x, x2)
x = self.att2(g=x2, x=x)
x = self.up1(x, x1)
x = self.att1(g=x1, x=x)
x = self.output(x)
return x
```
注意到这里的输出特征图维度为3,因此我们在最后的`nn.Conv2d`中将输出通道数设为3。如果需要修改输入输出维度以及网络结构,可以根据实际情况进行修改。
if ds in attention_resolutions: layers.append( AttentionBlock( ch, use_checkpoint=use_checkpoint, num_heads=num_heads, num_head_channels=num_head_channels, use_new_attention_order=use_new_attention_order, ) )在UNet中有什么用
这段代码是在 UNet 中用于添加注意力机制的模块。UNet 是一种用于图像分割的卷积神经网络模型,它包含了编码器和解码器两个部分。在解码器部分,为了能够获得更好的分割效果,我们需要将编码器中高层次语义信息和解码器中低层次细节信息相结合。而注意力机制就是一种能够帮助模型更好地利用高层次语义信息的技术。
这段代码中,`AttentionBlock` 就是一个注意力机制模块,它会对输入的特征图进行注意力加权,从而使得模型更加关注重要的特征。`num_heads` 和 `num_head_channels` 参数控制了注意力机制中头的数量和每个头的通道数,这些参数可以调整以适应不同的任务和数据集。`use_new_attention_order` 参数则控制了注意力机制中计算 attention 分数的顺序,这个参数可以根据实验效果进行调整。`use_checkpoint` 参数用于控制是否使用 Checkpoint 技术,可以有效减少显存使用量,加速训练过程。
阅读全文