self attention与unet

时间: 2023-07-14 13:05:03 浏览: 65
self attention和UNet是两个不同的概念和模型。 Self-attention是一种注意力机制,用于处理序列数据中的依赖关系。它可以通过计算序列中每个元素与其他元素的关联程度,来为每个元素分配一个权重。这些权重可以用于加权求和,从而获取每个元素的表示。Self-attention在自然语言处理领域非常流行,并被广泛应用于Transformer模型中。 UNet是一种用于图像分割的卷积神经网络结构。它由编码器和解码器两部分组成。编码器部分通过卷积和池化操作逐渐提取图像特征,并进行下采样。解码器部分通过上采样和卷积操作将特征映射恢复到原始图像大小,并进行特征融合。UNet的特点是具有跳跃连接,可以帮助解决分割任务中的细节保留和信息传递问题。 总结起来,self-attention是一种注意力机制,用于处理序列数据中的依赖关系;而UNet是一种用于图像分割的神经网络结构。它们在不同的领域中有着不同的应用和作用。
相关问题

写一个基于self attention 的 unet模型程序

以下是一个基于self attention的unet模型的程序: ``` import torch import torch.nn as nn import torch.nn.functional as F class SelfAttentionBlock(nn.Module): def __init__(self, in_channels): super(SelfAttentionBlock, self).__init__() self.query_conv = nn.Conv2d(in_channels, in_channels // 8, kernel_size=1) self.key_conv = nn.Conv2d(in_channels, in_channels // 8, kernel_size=1) self.value_conv = nn.Conv2d(in_channels, in_channels, kernel_size=1) self.gamma = nn.Parameter(torch.zeros(1)) def forward(self, x): batch_size, C, H, W = x.size() proj_query = self.query_conv(x).view(batch_size, -1, H * W).permute(0, 2, 1) proj_key = self.key_conv(x).view(batch_size, -1, H * W) energy = torch.bmm(proj_query, proj_key) attention = F.softmax(energy, dim=-1) proj_value = self.value_conv(x).view(batch_size, -1, H * W) out = torch.bmm(proj_value, attention.permute(0, 2, 1)) out = out.view(batch_size, C, H, W) out = self.gamma * out + x return out class DoubleConv(nn.Module): def __init__(self, in_channels, out_channels): super(DoubleConv, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ) def forward(self, x): x = self.conv(x) return x class Up(nn.Module): def __init__(self, in_channels, out_channels, bilinear=True): super(Up, self).__init__() if bilinear: self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) else: self.up = nn.ConvTranspose2d(in_channels // 2, in_channels // 2, kernel_size=2, stride=2) self.conv = DoubleConv(in_channels, out_channels) def forward(self, x1, x2): x1 = self.up(x1) diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2]) x = torch.cat([x2, x1], dim=1) x = self.conv(x) return x class UNet(nn.Module): def __init__(self, n_channels, n_classes, bilinear=True): super(UNet, self).__init__() self.n_channels = n_channels self.n_classes = n_classes self.bilinear = bilinear self.inc = DoubleConv(n_channels, 64) self.down1 = DoubleConv(64, 128) self.down2 = DoubleConv(128, 256) self.down3 = DoubleConv(256, 512) self.down4 = DoubleConv(512, 1024) self.up1 = Up(1024, 512, bilinear) self.up2 = Up(512, 256, bilinear) self.up3 = Up(256, 128, bilinear) self.up4 = Up(128, 64, bilinear) self.outc = nn.Conv2d(64, n_classes, kernel_size=1) self.sa1 = SelfAttentionBlock(64) self.sa2 = SelfAttentionBlock(128) self.sa3 = SelfAttentionBlock(256) self.sa4 = SelfAttentionBlock(512) def forward(self, x): x1 = self.inc(x) x2 = self.down1(x1) x2 = self.sa1(x2) x3 = self.down2(x2) x3 = self.sa2(x3) x4 = self.down3(x3) x4 = self.sa3(x4) x5 = self.down4(x4) x5 = self.sa4(x5) x = self.up1(x5, x4) x = self.up2(x, x3) x = self.up3(x, x2) x = self.up4(x, x1) x = self.outc(x) return x ``` 希望这个程序能够帮助你!

请写出使用基于pytorch的attention-Unet模型分割乳腺超声图像的代码

我可以提供一个参考,你可以参考以下代码:import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variableclass Attention_Unet(nn.Module): def __init__(self, in_channels=1, out_channels=1, init_features=32): super(Attention_Unet, self).__init__() #Encoder self.conv1 = nn.Sequential(nn.Conv2d(in_channels, init_features, 3, padding=1), nn.BatchNorm2d(init_features), nn.ReLU(inplace=True)) self.conv2 = nn.Sequential(nn.Conv2d(init_features, init_features, 3, padding=1), nn.BatchNorm2d(init_features), nn.ReLU(inplace=True)) self.maxpool = nn.MaxPool2d(2, 2) self.conv3 = nn.Sequential(nn.Conv2d(init_features, init_features*2, 3, padding=1), nn.BatchNorm2d(init_features*2), nn.ReLU(inplace=True)) self.conv4 = nn.Sequential(nn.Conv2d(init_features*2, init_features*2, 3, padding=1), nn.BatchNorm2d(init_features*2), nn.ReLU(inplace=True)) self.conv5 = nn.Sequential(nn.Conv2d(init_features*2, init_features*4, 3, padding=1), nn.BatchNorm2d(init_features*4), nn.ReLU(inplace=True)) self.conv6 = nn.Sequential(nn.Conv2d(init_features*4, init_features*4, 3, padding=1), nn.BatchNorm2d(init_features*4), nn.ReLU(inplace=True)) self.conv7 = nn.Sequential(nn.Conv2d(init_features*4, init_features*8, 3, padding=1), nn.BatchNorm2d(init_features*8), nn.ReLU(inplace=True)) self.conv8 = nn.Sequential(nn.Conv2d(init_features*8, init_features*8, 3, padding=1), nn.BatchNorm2d(init_features*8), nn.ReLU(inplace=True)) #Decoder self.upconv1 = nn.ConvTranspose2d(init_features*8, init_features*4, 2, stride=2) self.conv9 = nn.Sequential(nn.Conv2d(init_features*12, init_features*4, 3, padding=1), nn.BatchNorm2d(init_features*4), nn.ReLU(inplace=True)) self.conv10 = nn.Sequential(nn.Conv2d(init_features*4, init_features*4, 3, padding=1), nn.BatchNorm2d(init_features*4), nn.ReLU(inplace=True)) self.upconv2 = nn.ConvTranspose2d(init_features*4, init_features*2, 2, stride=2) self.conv11 = nn.Sequential(nn.Conv2d(init_features*6, init_features*2, 3, padding=1), nn.BatchNorm2d(init_features*2), nn.ReLU(inplace=True)) self.conv12 = nn.Sequential(nn.Conv2d(init_features*2, init_features*2, 3, padding=1), nn.BatchNorm2d(init_features*2), nn.ReLU(inplace=True)) self.upconv3 = nn.ConvTranspose2d(init_features*2, init_features, 2, stride=2) self.conv13 = nn.Sequential(nn.Conv2d(init_features*3, init_features, 3, padding=1), nn.BatchNorm2d(init_features), nn.ReLU(inplace=True)) self.conv14 = nn.Sequential(nn.Conv2d(init_features, init_features, 3, padding=1), nn.BatchNorm2d(init_features), nn.ReLU(inplace=True)) self.conv15 = nn.Conv2d(init_features, out_channels, 1) def forward(self, x): # Encoder x1 = self.conv1(x) x2 = self.conv2(x1) x3 = self.maxpool(x2) x4 = self.conv3(x3) x5 = self.conv4(x4) x6 = self.maxpool(x5) x7 = self.conv5(x6) x8 = self.conv6(x7) x9 = self.maxpool(x8) x10 = self.conv7(x9) x11 = self.conv8(x10) # Decoder x12 = self.upconv1(x11) x12 = torch.cat((x12, x8), dim=1) # concat along channel axis x13 = self.conv9(x12) x14 = self.conv10(x13) x15 = self.upconv2(x14) x15 = torch.cat((x15, x5), dim=1) x16 = self.conv11(x15) x17 = self.conv12(x16) x18 = self.upconv3(x17) x18 = torch.cat((x18, x2), dim=1) x19 = self.conv13(x18) x20 = self.conv14(x19) x21 = self.conv15(x20) return x21

相关推荐

最新推荐

recommend-type

Scrapy-1.8.2.tar.gz

文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

search-log.zip

搜索记录,包括时间、搜索关键词等,用于PySpark案例练习
recommend-type

6-12.py

6-12
recommend-type

2-6.py

2-6
recommend-type

Scrapy-0.24.5-py2-none-any.whl

文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。